Sentence Similarity
sentence-transformers
PyTorch
Transformers
English
t5
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
prompt-retrieval
text-reranking
feature-extraction
English
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
Eval Results
Inference Endpoints
Andrew Luo
commited on
Commit
•
345a2f0
1
Parent(s):
4bce99a
custom handler
Browse files- handler.py +22 -0
- requirements.txt +2 -0
handler.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from InstructorEmbedding import INSTRUCTOR
|
3 |
+
|
4 |
+
class EndpointHandler():
|
5 |
+
def __init__(self, path=""):
|
6 |
+
model = INSTRUCTOR('hkunlp/instructor-large')
|
7 |
+
self.model = model
|
8 |
+
|
9 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
10 |
+
"""
|
11 |
+
data args:
|
12 |
+
inputs (:obj: `str`)
|
13 |
+
date (:obj: `str`)
|
14 |
+
Return:
|
15 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
16 |
+
"""
|
17 |
+
# get inputs
|
18 |
+
instruction = data.pop("instruction",data)
|
19 |
+
text = data.pop("text", data)
|
20 |
+
|
21 |
+
embeddings = self.model.encode([[instruction,text]])
|
22 |
+
return embeddings[0].tolist()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
InstructorEmbedding
|
2 |
+
sentence-transformers
|