File size: 1,345 Bytes
82d926b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# testmodel1

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("baseball46245/testmodel1")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 1
* Number of training documents: 17

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | the - of - and - ai - to | 17 | -1_the_of_and_ai |
  
</details>

## Training hyperparameters

* calculate_probabilities: False
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False

## Framework versions

* Numpy: 1.24.3
* HDBSCAN: 0.8.29
* UMAP: 0.5.3
* Pandas: 2.0.2
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.30.1
* Numba: 0.57.0
* Plotly: 5.15.0
* Python: 3.10.6