--- language: - pl license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large v2 PL results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: pl split: test args: pl metrics: - type: wer value: 6.89 name: WER - type: wer_without_norm value: 19.79 name: WER unnormalized - type: cer value: 1.88 name: CER - type: mer value: 6.84 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli type: facebook/voxpopuli config: pl split: test metrics: - type: wer value: 9.26 name: WER - type: wer_without_norm value: 30.25 name: WER unnormalized - type: cer value: 5.32 name: CER - type: mer value: 9.1 name: MER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: pl_pl split: test metrics: - type: wer value: 9.88 name: WER - type: wer_without_norm value: 29.53 name: WER unnormalized - type: cer value: 5.09 name: CER - type: mer value: 9.73 name: MER --- # Whisper Large v2 PL This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4222 - Wer: 6.9125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1144 | 1.93 | 500 | 0.2016 | 7.4749 | | 0.0441 | 3.86 | 1000 | 0.2193 | 7.3154 | | 0.0099 | 5.79 | 1500 | 0.2983 | 7.0804 | | 0.0048 | 7.72 | 2000 | 0.3514 | 7.0988 | | 0.0017 | 9.65 | 2500 | 0.3614 | 7.0485 | | 0.0014 | 11.58 | 3000 | 0.3814 | 7.1240 | | 0.001 | 13.51 | 3500 | 0.3773 | 6.9931 | | 0.0005 | 15.44 | 4000 | 0.4085 | 6.9662 | | 0.0004 | 17.37 | 4500 | 0.4195 | 6.9192 | | 0.0004 | 19.3 | 5000 | 0.4222 | 6.9125 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2