pattern_analogies / pipeline.py
bardofcodes's picture
Update pipeline.py
ae73afb verified
"""
ADOBE CONFIDENTIAL
Copyright 2024 Adobe
All Rights Reserved.
NOTICE: All information contained herein is, and remains
the property of Adobe and its suppliers, if any. The intellectual
and technical concepts contained herein are proprietary to Adobe
and its suppliers and are protected by all applicable intellectual
property laws, including trade secret and copyright laws.
Dissemination of this information or reproduction of this material
is strictly forbidden unless prior written permission is obtained
from Adobe.
"""
from typing import Callable, List, Optional, Union
import inspect
import einops
import PIL.Image
import numpy as np
import torch as th
from diffusers import DiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from analogy_encoder import AnalogyEncoder
from analogy_projector import AnalogyProjector
from analogy_input_processor import AnalogyInputProcessor
class PatternAnalogyTrifuser(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
"""
model_cpu_offload_seq = "bert->unet->vqvae"
analogy_input_processor: AnalogyInputProcessor
analogy_encoder: AnalogyEncoder
analogy_projector: AnalogyProjector
unet: UNet2DConditionModel
vae: AutoencoderKL
scheduler: KarrasDiffusionSchedulers
def __init__(self,
analogy_input_processor: AnalogyInputProcessor,
analogy_projector: AnalogyProjector,
analogy_encoder: AnalogyEncoder,
unet: UNet2DConditionModel,
vae: AutoencoderKL,
scheduler: KarrasDiffusionSchedulers,):
super().__init__()
self.register_modules(
analogy_input_processor=analogy_input_processor,
analogy_encoder=analogy_encoder,
analogy_projector=analogy_projector,
unet=unet,
vae=vae,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline.check_inputs
def check_inputs(self, analogy_prompt, negative_analogy_prompt, height, width, callback_steps):
if (
not isinstance(analogy_prompt, th.Tensor)
and not isinstance(analogy_prompt, PIL.Image.Image)
and not isinstance(analogy_prompt, list)
):
raise ValueError(
"`analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(analogy_prompt)}"
)
if not negative_analogy_prompt is None:
if (
not isinstance(negative_analogy_prompt, th.Tensor)
and not isinstance(negative_analogy_prompt, PIL.Image.Image)
and not isinstance(negative_analogy_prompt, list)
):
raise ValueError(
"`negative_analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(negative_analogy_prompt)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _encode_prompt(self, analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
"""
weight_dtype = self.unet.dtype
dino_input, siglip_input = self.analogy_input_processor(analogy_prompt)
dino_input = dino_input.to(device=device).to(dtype=weight_dtype)
siglip_input = siglip_input.to(device=device).to(dtype=weight_dtype)
batch_size = dino_input.shape[1]
dino_input_reshaped = einops.rearrange(dino_input, "k b c h w -> (k b) c h w")
siglip_input_reshaped = einops.rearrange(siglip_input, "k b c h w -> (k b) c h w")
dino_enc, siglip_enc = self.analogy_encoder(dino_input_reshaped, siglip_input_reshaped)
image_embeddings = self.analogy_projector(dino_enc, siglip_enc, batch_size)
# Check size here.
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_images: List[str]
if negative_prompt is None:
uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size
elif type(negative_prompt) is not type(analogy_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(analogy_prompt)} !="
f" {type(negative_prompt)}."
)
elif isinstance(negative_prompt, PIL.Image.Image):
uncond_images = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {analogy_prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_images = negative_prompt
dino_neg, siglip_neg = self.analogy_input_processor.get_negative(dino_input, siglip_input)
dino_neg = dino_neg.to(device=device).to(dtype=weight_dtype)
siglip_neg = siglip_neg.to(device=device).to(dtype=weight_dtype)
dino_neg_reshaped = einops.rearrange(dino_neg, "k b c h w -> (k b) c h w")
siglip_neg_reshaped = einops.rearrange(siglip_neg, "k b c h w -> (k b) c h w")
dino_neg_enc, siglip_neg_enc = self.analogy_encoder(dino_neg_reshaped, siglip_neg_reshaped)
negative_prompt_embeds = self.analogy_projector(dino_neg_enc, siglip_neg_enc, batch_size)
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1, 1)
image_embeddings = th.cat([negative_prompt_embeds, image_embeddings])
return image_embeddings
@th.no_grad()
def __call__(
self,
analogy_prompt: Union[str, List[str]] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
height: Optional[int] = None,
width: Optional[int] = None,
negative_analogy_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[th.Generator, List[th.Generator]]] = None,
latents: Optional[th.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, th.Tensor], None]] = None,
callback_steps: int = 1,
start_step: int = 0,
):
r"""
The call function to the pipeline for generation.
Args:
analogy_prompt (`List[Tuple[PIL.Image.Image]]'):
The analogy sequence A, A*, B which is our model's prompt for generating B* the analogical pattern satisfying A:A*::B:B*.
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
Examples:
```py
import requests
import torch as th
from PIL import Image
from io import BytesIO
import matplotlib.pyplot as plt
from PIL import Image, ImageOps
from diffusers import DiffusionPipeline
SEED = 1729
DEVICE = th.device("cuda")
DTYPE = th.float16
FIG_K = 3
EXAMPLE_ID = 0
# Now we need to do the trick
pretrained_path = "bardofcodes/pattern_analogies"
new_pipe = DiffusionPipeline.from_pretrained(
pretrained_path,
custom_pipeline=pretrained_path,
trust_remote_code=True
)
img_urls = [
f"https://huggingface.co./bardofcodes/pattern_analogies/resolve/main/examples/{EXAMPLE_ID}_a.png",
f"https://huggingface.co./bardofcodes/pattern_analogies/resolve/main/examples/{EXAMPLE_ID}_a_star.png",
f"https://huggingface.co./bardofcodes/pattern_analogies/resolve/main/examples/{EXAMPLE_ID}_b.png",
]
images = []
for url in img_urls:
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
images.append(image)
pipe_input = [tuple(images)]
pipe = new_pipe.to(DEVICE, DTYPE)
var_images = pipe(pipe_input, num_inference_steps=50, num_images_per_prompt=3,).images
plt.figure(figsize=(3*FIG_K, 2*FIG_K))
plt.axis('off')
plt.legend(framealpha=1)
plt.rcParams['legend.fontsize'] = 'large'
for i in range(6):
if i == 0:
plt.subplot(2, 3, i+1)
val_image = img1
label_str = "A"
elif i == 1:
plt.subplot(2, 3, i+1)
val_image = alt_img1
label_str = "A*"
elif i == 2:
plt.subplot(2, 3, i+1)
val_image = img2
label_str = "Target"
else:
plt.subplot(2, 3,i + 1)
val_image = var_images[i-3]
label_str = f"Variation {i-2}"
val_image = ImageOps.expand(val_image,border=2,fill='black')
plt.imshow(val_image)
plt.scatter([], [], c="r", label=label_str)
plt.legend(loc="lower right")
plt.axis('off')
plt.subplots_adjust(wspace=0.01, hspace=0.01)
```
Returns:
[`~ImagePipelineOutput`] or `tuple`
The generated image(s) as a [`~ImagePipelineOutput`] or a tuple of images.
"""
# 1. Check inputs. Raise error if not correct
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(analogy_prompt, negative_analogy_prompt, height, width, callback_steps)
# 2. Define call parameters
if isinstance(analogy_prompt, list):
batch_size = len(analogy_prompt)
elif isinstance(analogy_prompt, tuple):
batch_size = 1
else:
raise ValueError(
f"`analogy_prompt` has to be a list of images or a tuple of images but is of type {type(analogy_prompt)}"
)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
analogy_embeddings = self._encode_prompt(
analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_analogy_prompt
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# Now this should be from start step onwards
timesteps = timesteps[start_step:]
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
analogy_embeddings.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
for i, t in enumerate(self.progress_bar(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = th.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=analogy_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
else:
image = latents
image = self.image_processor.postprocess(image, output_type=output_type)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)