|
""" |
|
ADOBE CONFIDENTIAL |
|
Copyright 2024 Adobe |
|
All Rights Reserved. |
|
NOTICE: All information contained herein is, and remains |
|
the property of Adobe and its suppliers, if any. The intellectual |
|
and technical concepts contained herein are proprietary to Adobe |
|
and its suppliers and are protected by all applicable intellectual |
|
property laws, including trade secret and copyright laws. |
|
Dissemination of this information or reproduction of this material |
|
is strictly forbidden unless prior written permission is obtained |
|
from Adobe. |
|
""" |
|
|
|
from typing import Callable, List, Optional, Union |
|
import inspect |
|
import einops |
|
import PIL.Image |
|
import numpy as np |
|
import torch as th |
|
|
|
from diffusers import DiffusionPipeline |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
from analogy_encoder import AnalogyEncoder |
|
from analogy_projector import AnalogyProjector |
|
from analogy_input_processor import AnalogyInputProcessor |
|
|
|
class PatternAnalogyTrifuser(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
""" |
|
|
|
model_cpu_offload_seq = "bert->unet->vqvae" |
|
|
|
analogy_input_processor: AnalogyInputProcessor |
|
analogy_encoder: AnalogyEncoder |
|
analogy_projector: AnalogyProjector |
|
unet: UNet2DConditionModel |
|
vae: AutoencoderKL |
|
scheduler: KarrasDiffusionSchedulers |
|
|
|
def __init__(self, |
|
analogy_input_processor: AnalogyInputProcessor, |
|
analogy_projector: AnalogyProjector, |
|
analogy_encoder: AnalogyEncoder, |
|
unet: UNet2DConditionModel, |
|
vae: AutoencoderKL, |
|
scheduler: KarrasDiffusionSchedulers,): |
|
|
|
|
|
super().__init__() |
|
self.register_modules( |
|
analogy_input_processor=analogy_input_processor, |
|
analogy_encoder=analogy_encoder, |
|
analogy_projector=analogy_projector, |
|
unet=unet, |
|
vae=vae, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
|
|
def check_inputs(self, analogy_prompt, negative_analogy_prompt, height, width, callback_steps): |
|
if ( |
|
not isinstance(analogy_prompt, th.Tensor) |
|
and not isinstance(analogy_prompt, PIL.Image.Image) |
|
and not isinstance(analogy_prompt, list) |
|
): |
|
raise ValueError( |
|
"`analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" |
|
f" {type(analogy_prompt)}" |
|
) |
|
if not negative_analogy_prompt is None: |
|
if ( |
|
not isinstance(negative_analogy_prompt, th.Tensor) |
|
and not isinstance(negative_analogy_prompt, PIL.Image.Image) |
|
and not isinstance(negative_analogy_prompt, list) |
|
): |
|
raise ValueError( |
|
"`negative_analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" |
|
f" {type(negative_analogy_prompt)}" |
|
) |
|
|
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def _encode_prompt(self, analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
""" |
|
weight_dtype = self.unet.dtype |
|
dino_input, siglip_input = self.analogy_input_processor(analogy_prompt) |
|
dino_input = dino_input.to(device=device).to(dtype=weight_dtype) |
|
siglip_input = siglip_input.to(device=device).to(dtype=weight_dtype) |
|
batch_size = dino_input.shape[1] |
|
dino_input_reshaped = einops.rearrange(dino_input, "k b c h w -> (k b) c h w") |
|
siglip_input_reshaped = einops.rearrange(siglip_input, "k b c h w -> (k b) c h w") |
|
dino_enc, siglip_enc = self.analogy_encoder(dino_input_reshaped, siglip_input_reshaped) |
|
image_embeddings = self.analogy_projector(dino_enc, siglip_enc, batch_size) |
|
|
|
|
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_images: List[str] |
|
if negative_prompt is None: |
|
uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size |
|
elif type(negative_prompt) is not type(analogy_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(analogy_prompt)} !=" |
|
f" {type(negative_prompt)}." |
|
) |
|
elif isinstance(negative_prompt, PIL.Image.Image): |
|
uncond_images = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {analogy_prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_images = negative_prompt |
|
dino_neg, siglip_neg = self.analogy_input_processor.get_negative(dino_input, siglip_input) |
|
|
|
dino_neg = dino_neg.to(device=device).to(dtype=weight_dtype) |
|
siglip_neg = siglip_neg.to(device=device).to(dtype=weight_dtype) |
|
dino_neg_reshaped = einops.rearrange(dino_neg, "k b c h w -> (k b) c h w") |
|
siglip_neg_reshaped = einops.rearrange(siglip_neg, "k b c h w -> (k b) c h w") |
|
dino_neg_enc, siglip_neg_enc = self.analogy_encoder(dino_neg_reshaped, siglip_neg_reshaped) |
|
negative_prompt_embeds = self.analogy_projector(dino_neg_enc, siglip_neg_enc, batch_size) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1, 1) |
|
image_embeddings = th.cat([negative_prompt_embeds, image_embeddings]) |
|
|
|
|
|
return image_embeddings |
|
|
|
@th.no_grad() |
|
def __call__( |
|
self, |
|
analogy_prompt: Union[str, List[str]] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
negative_analogy_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[th.Generator, List[th.Generator]]] = None, |
|
latents: Optional[th.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, th.Tensor], None]] = None, |
|
callback_steps: int = 1, |
|
start_step: int = 0, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
analogy_prompt (`List[Tuple[PIL.Image.Image]]'): |
|
The analogy sequence A, A*, B which is our model's prompt for generating B* the analogical pattern satisfying A:A*::B:B*. |
|
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
|
|
Examples: |
|
|
|
```py |
|
import requests |
|
import torch as th |
|
from PIL import Image |
|
from io import BytesIO |
|
import matplotlib.pyplot as plt |
|
from PIL import Image, ImageOps |
|
from diffusers import DiffusionPipeline |
|
|
|
SEED = 1729 |
|
DEVICE = th.device("cuda") |
|
DTYPE = th.float16 |
|
FIG_K = 3 |
|
EXAMPLE_ID = 0 |
|
|
|
# Now we need to do the trick |
|
pretrained_path = "bardofcodes/pattern_analogies" |
|
new_pipe = DiffusionPipeline.from_pretrained( |
|
pretrained_path, |
|
custom_pipeline=pretrained_path, |
|
trust_remote_code=True |
|
) |
|
|
|
img_urls = [ |
|
f"https://huggingface.co./bardofcodes/pattern_analogies/resolve/main/examples/{EXAMPLE_ID}_a.png", |
|
f"https://huggingface.co./bardofcodes/pattern_analogies/resolve/main/examples/{EXAMPLE_ID}_a_star.png", |
|
f"https://huggingface.co./bardofcodes/pattern_analogies/resolve/main/examples/{EXAMPLE_ID}_b.png", |
|
] |
|
images = [] |
|
for url in img_urls: |
|
response = requests.get(url) |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
images.append(image) |
|
|
|
pipe_input = [tuple(images)] |
|
|
|
pipe = new_pipe.to(DEVICE, DTYPE) |
|
var_images = pipe(pipe_input, num_inference_steps=50, num_images_per_prompt=3,).images |
|
|
|
plt.figure(figsize=(3*FIG_K, 2*FIG_K)) |
|
plt.axis('off') |
|
plt.legend(framealpha=1) |
|
plt.rcParams['legend.fontsize'] = 'large' |
|
for i in range(6): |
|
if i == 0: |
|
plt.subplot(2, 3, i+1) |
|
val_image = img1 |
|
label_str = "A" |
|
elif i == 1: |
|
plt.subplot(2, 3, i+1) |
|
val_image = alt_img1 |
|
label_str = "A*" |
|
elif i == 2: |
|
plt.subplot(2, 3, i+1) |
|
val_image = img2 |
|
label_str = "Target" |
|
else: |
|
plt.subplot(2, 3,i + 1) |
|
val_image = var_images[i-3] |
|
label_str = f"Variation {i-2}" |
|
|
|
val_image = ImageOps.expand(val_image,border=2,fill='black') |
|
plt.imshow(val_image) |
|
plt.scatter([], [], c="r", label=label_str) |
|
plt.legend(loc="lower right") |
|
plt.axis('off') |
|
plt.subplots_adjust(wspace=0.01, hspace=0.01) |
|
``` |
|
|
|
Returns: |
|
[`~ImagePipelineOutput`] or `tuple` |
|
The generated image(s) as a [`~ImagePipelineOutput`] or a tuple of images. |
|
""" |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(analogy_prompt, negative_analogy_prompt, height, width, callback_steps) |
|
|
|
|
|
if isinstance(analogy_prompt, list): |
|
batch_size = len(analogy_prompt) |
|
elif isinstance(analogy_prompt, tuple): |
|
batch_size = 1 |
|
else: |
|
raise ValueError( |
|
f"`analogy_prompt` has to be a list of images or a tuple of images but is of type {type(analogy_prompt)}" |
|
) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
analogy_embeddings = self._encode_prompt( |
|
analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_analogy_prompt |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
|
|
timesteps = self.scheduler.timesteps |
|
|
|
timesteps = timesteps[start_step:] |
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
analogy_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = th.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=analogy_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |