|
""" |
|
ADOBE CONFIDENTIAL |
|
Copyright 2024 Adobe |
|
All Rights Reserved. |
|
NOTICE: All information contained herein is, and remains |
|
the property of Adobe and its suppliers, if any. The intellectual |
|
and technical concepts contained herein are proprietary to Adobe |
|
and its suppliers and are protected by all applicable intellectual |
|
property laws, including trade secret and copyright laws. |
|
Dissemination of this information or reproduction of this material |
|
is strictly forbidden unless prior written permission is obtained |
|
from Adobe. |
|
""" |
|
|
|
import einops |
|
import numpy as np |
|
import torch as th |
|
import torch.nn as nn |
|
from diffusers import ModelMixin |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
|
|
|
|
|
|
OUT_SIZE = 768 |
|
IN_SIZE = 2048 |
|
|
|
|
|
def get_emb(sin_inp): |
|
""" |
|
Gets a base embedding for one dimension with sin and cos intertwined |
|
""" |
|
emb = th.stack((sin_inp.sin(), sin_inp.cos()), dim=-1) |
|
return th.flatten(emb, -2, -1) |
|
|
|
|
|
class PositionalEncoding1D(nn.Module): |
|
def __init__(self, channels): |
|
""" |
|
:param channels: The last dimension of the tensor you want to apply pos emb to. |
|
""" |
|
super(PositionalEncoding1D, self).__init__() |
|
self.org_channels = channels |
|
channels = int(np.ceil(channels / 2) * 2) |
|
self.channels = channels |
|
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.register_buffer("cached_penc", None, persistent=False) |
|
|
|
def forward(self, tensor): |
|
""" |
|
:param tensor: A 3d tensor of size (batch_size, x, ch) |
|
:return: Positional Encoding Matrix of size (batch_size, x, ch) |
|
""" |
|
if len(tensor.shape) != 3: |
|
raise RuntimeError("The input tensor has to be 3d!") |
|
|
|
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape: |
|
return self.cached_penc |
|
|
|
self.cached_penc = None |
|
batch_size, x, orig_ch = tensor.shape |
|
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype) |
|
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq) |
|
emb_x = get_emb(sin_inp_x) |
|
emb = th.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype) |
|
emb[:, : self.channels] = emb_x |
|
|
|
self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1) |
|
return self.cached_penc |
|
|
|
|
|
|
|
class PositionalEncoding3D(nn.Module): |
|
def __init__(self, channels): |
|
""" |
|
:param channels: The last dimension of the tensor you want to apply pos emb to. |
|
""" |
|
super(PositionalEncoding3D, self).__init__() |
|
self.org_channels = channels |
|
channels = int(np.ceil(channels / 6) * 2) |
|
if channels % 2: |
|
channels += 1 |
|
self.channels = channels |
|
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.register_buffer("cached_penc", None, persistent=False) |
|
|
|
def forward(self, tensor): |
|
""" |
|
:param tensor: A 5d tensor of size (batch_size, x, y, z, ch) |
|
:return: Positional Encoding Matrix of size (batch_size, x, y, z, ch) |
|
""" |
|
if len(tensor.shape) != 5: |
|
raise RuntimeError("The input tensor has to be 5d!") |
|
|
|
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape: |
|
return self.cached_penc |
|
|
|
self.cached_penc = None |
|
batch_size, x, y, z, orig_ch = tensor.shape |
|
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype) |
|
pos_y = th.arange(y, device=tensor.device, dtype=self.inv_freq.dtype) |
|
pos_z = th.arange(z, device=tensor.device, dtype=self.inv_freq.dtype) |
|
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq) |
|
sin_inp_y = th.einsum("i,j->ij", pos_y, self.inv_freq) |
|
sin_inp_z = th.einsum("i,j->ij", pos_z, self.inv_freq) |
|
emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1) |
|
emb_y = get_emb(sin_inp_y).unsqueeze(1) |
|
emb_z = get_emb(sin_inp_z) |
|
emb = th.zeros( |
|
(x, y, z, self.channels * 3), |
|
device=tensor.device, |
|
dtype=tensor.dtype, |
|
) |
|
emb[:, :, :, : self.channels] = emb_x |
|
emb[:, :, :, self.channels : 2 * self.channels] = emb_y |
|
emb[:, :, :, 2 * self.channels :] = emb_z |
|
|
|
self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1) |
|
return self.cached_penc |
|
|
|
class AnalogyProjector(ModelMixin, ConfigMixin): |
|
|
|
@register_to_config |
|
def __init__(self): |
|
super(AnalogyProjector, self).__init__() |
|
self.projector = DinoSiglipMixer() |
|
self.pos_embd_1D = PositionalEncoding1D(OUT_SIZE) |
|
self.pos_embd_3D = PositionalEncoding3D(OUT_SIZE) |
|
|
|
|
|
def forward(self, dino_in, siglip_in, batch_size): |
|
|
|
image_embeddings = self.projector(dino_in, siglip_in) |
|
|
|
image_embeddings = einops.rearrange(image_embeddings, '(k b) t d -> b k t d', b=batch_size) |
|
image_embeddings = self.position_embd(image_embeddings) |
|
return image_embeddings |
|
|
|
def position_embd(self, image_embeddings, concat=False): |
|
canvas_embd = image_embeddings[:, :, 1:, :] |
|
batch_size = canvas_embd.shape[0] |
|
type_size = canvas_embd.shape[1] |
|
xy_size = canvas_embd.shape[2] |
|
|
|
x_size = int(xy_size ** 0.5) |
|
|
|
canvas_embd = canvas_embd.reshape(batch_size, type_size, x_size, x_size, -1) |
|
if concat: |
|
canvas_embd = th.cat([canvas_embd, self.pos_embd_3D(canvas_embd)], -1) |
|
else: |
|
canvas_embd = self.pos_embd_3D(canvas_embd) + canvas_embd |
|
canvas_embd = canvas_embd.reshape(batch_size, type_size, xy_size, -1) |
|
|
|
class_embd = image_embeddings[:, :, 0, :] |
|
if concat: |
|
class_embd = th.cat([class_embd, self.pos_embd_1D(class_embd)], -1) |
|
else: |
|
class_embd = self.pos_embd_1D(class_embd) + class_embd |
|
all_embd_list = [] |
|
for i in range(type_size): |
|
all_embd_list.append(class_embd[:, i:i+1]) |
|
all_embd_list.append(canvas_embd[:, i]) |
|
image_embeddings = th.cat(all_embd_list, 1) |
|
return image_embeddings |
|
|
|
|
|
class HighLowMixer(th.nn.Module): |
|
def __init__(self, in_size=IN_SIZE, out_size=OUT_SIZE): |
|
super().__init__() |
|
mid_size = (in_size + out_size) // 2 |
|
|
|
self.lower_projector = th.nn.Sequential( |
|
th.nn.LayerNorm(IN_SIZE//2), |
|
th.nn.SiLU() |
|
) |
|
self.upper_projector = th.nn.Sequential( |
|
th.nn.LayerNorm(IN_SIZE//2), |
|
th.nn.SiLU() |
|
) |
|
self.projectors = th.nn.ModuleList([ |
|
|
|
th.nn.Linear(in_size, mid_size), |
|
th.nn.SiLU(), |
|
th.nn.Linear(mid_size, out_size) |
|
]) |
|
|
|
for proj in self.projectors: |
|
if isinstance(proj, th.nn.Linear): |
|
th.nn.init.xavier_uniform_(proj.weight) |
|
th.nn.init.zeros_(proj.bias) |
|
|
|
def forward(self, lower_in, upper_in, ): |
|
|
|
lower_in = self.lower_projector(lower_in) |
|
upper_in = self.upper_projector(upper_in) |
|
x = th.cat([lower_in, upper_in], -1) |
|
for proj in self.projectors: |
|
x = proj(x) |
|
return x |
|
|
|
class DinoSiglipMixer(th.nn.Module): |
|
def __init__(self, in_size=OUT_SIZE * 2, out_size=OUT_SIZE): |
|
super().__init__() |
|
self.dino_projector = HighLowMixer() |
|
self.siglip_projector = HighLowMixer() |
|
self.projectors = th.nn.Sequential( |
|
th.nn.SiLU(), |
|
th.nn.Linear(in_size, out_size), |
|
) |
|
|
|
for proj in self.projectors: |
|
if isinstance(proj, th.nn.Linear): |
|
th.nn.init.xavier_uniform_(proj.weight) |
|
th.nn.init.zeros_(proj.bias) |
|
|
|
|
|
def forward(self, dino_in, siglip_in): |
|
|
|
lower, upper = th.chunk(dino_in, 2, -1) |
|
dino_out = self.dino_projector(lower, upper) |
|
lower, upper = th.chunk(siglip_in, 2, -1) |
|
siglip_out = self.siglip_projector(lower, upper) |
|
x = th.cat([dino_out, siglip_out], -1) |
|
for proj in self.projectors: |
|
x = proj(x) |
|
return x |
|
|