|
import requests
|
|
import random
|
|
from PIL import Image, ImageOps, ImageDraw, ImageFont
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
import io, re, base64, os
|
|
import zipfile
|
|
import math
|
|
import time
|
|
import piexif
|
|
from imghdr import what
|
|
|
|
BASE_URL="https://image.novelai.net"
|
|
|
|
def extract_prompt_info(info, app_mode=""):
|
|
import string
|
|
|
|
|
|
def decode_user_comment(exif_dict):
|
|
if 'Exif' in exif_dict and 37510 in exif_dict['Exif']:
|
|
user_comment = exif_dict['Exif'][37510]
|
|
if user_comment.startswith(b'UNICODE\x00\x00'):
|
|
try:
|
|
|
|
unicode_data = user_comment[8:]
|
|
decoded_text = unicode_data.decode('utf-16').replace('\x00', '')
|
|
decoded_text = decoded_text.replace("UNICODE", "")
|
|
return re.sub(f"[^{string.printable}]", "", decoded_text)
|
|
except UnicodeDecodeError:
|
|
return None
|
|
return None
|
|
|
|
try:
|
|
|
|
if app_mode == "NAI":
|
|
return info.get('Comment', '')
|
|
|
|
|
|
if 'parameters' in info:
|
|
return info['parameters']
|
|
|
|
|
|
if 'exif' in info:
|
|
exif_dict = piexif.load(info['exif'])
|
|
|
|
|
|
decoded_comment = decode_user_comment(exif_dict)
|
|
if decoded_comment:
|
|
return decoded_comment
|
|
|
|
|
|
for ifd in exif_dict:
|
|
if ifd == 'thumbnail':
|
|
continue
|
|
if isinstance(exif_dict[ifd], dict):
|
|
for tag, value in exif_dict[ifd].items():
|
|
|
|
if isinstance(value, (bytes, str)) and value:
|
|
try:
|
|
if isinstance(value, bytes):
|
|
decoded = value.decode('utf-8', errors='ignore')
|
|
else:
|
|
decoded = value
|
|
if decoded and len(decoded) > 10:
|
|
|
|
return re.sub(f"[^{string.printable}]", "", decoded)
|
|
except:
|
|
continue
|
|
|
|
|
|
return "webp or jpeg prompts"
|
|
|
|
except Exception as e:
|
|
print(f"ํ๋กฌํํธ ์ถ์ถ ์ค ์ค๋ฅ ๋ฐ์: {e}")
|
|
return "webp or jpeg prompts"
|
|
|
|
def find_max_resolution(width, height, max_pixels=1048576, multiple_of=64):
|
|
ratio = int(width) / int(height)
|
|
|
|
max_width = int((max_pixels * ratio)**0.5)
|
|
max_height = int((max_pixels / ratio)**0.5)
|
|
|
|
max_width = (max_width // multiple_of) * multiple_of
|
|
max_height = (max_height // multiple_of) * multiple_of
|
|
|
|
while max_width * max_height > max_pixels:
|
|
max_width -= multiple_of
|
|
max_height = int(max_width / ratio)
|
|
max_height = (max_height // multiple_of) * multiple_of
|
|
|
|
if max_pixels == 1048576:
|
|
attempts = 0
|
|
max_attempts = 10
|
|
while (max_width % multiple_of + max_height % multiple_of) < 32 and attempts < max_attempts:
|
|
if random.choice([True, False]):
|
|
if (max_width + multiple_of) * max_height <= max_pixels:
|
|
max_width += multiple_of
|
|
else:
|
|
if max_width * (max_height + multiple_of) <= max_pixels:
|
|
max_height += multiple_of
|
|
attempts += 1
|
|
|
|
return (str(max_width), str(max_height))
|
|
|
|
def process_xargs(xargs):
|
|
processed_xargs = []
|
|
skip_until = None
|
|
|
|
for i, elem in enumerate(xargs):
|
|
if skip_until is not None and i <= skip_until:
|
|
continue
|
|
|
|
if "add_negative:<" in elem or "rem_negative:<" in elem:
|
|
|
|
if elem.endswith(">"):
|
|
processed_xargs.append(elem)
|
|
else:
|
|
combined_elem = elem
|
|
for j in range(i + 1, len(xargs)):
|
|
combined_elem += ',' + xargs[j]
|
|
if xargs[j].endswith(">"):
|
|
skip_until = j
|
|
break
|
|
processed_xargs.append(combined_elem)
|
|
else:
|
|
processed_xargs.append(elem)
|
|
|
|
return processed_xargs
|
|
|
|
def event_cond_negative(_prompt, negative, user_input, rating):
|
|
def insert_text_after_keyword(negative, user_keyword, user_additional_keyword):
|
|
if user_keyword in negative:
|
|
index = negative.index(user_keyword) + 1
|
|
negative.insert(index, user_additional_keyword)
|
|
return negative
|
|
def parse_conditional_command(command):
|
|
match = re.match(r"\((.*?)\)\:(.*)", command)
|
|
if match:
|
|
return match.groups()
|
|
return '', command
|
|
def check_condition(prompt, condition, rating):
|
|
if not condition:
|
|
return True
|
|
sub_conditions = re.split(r'\)\s*&\s*\(', condition)
|
|
sub_conditions = [re.sub(r'^\(|\)$', '', cond) for cond in sub_conditions]
|
|
|
|
results = []
|
|
for sub_cond in sub_conditions:
|
|
if '&' in sub_cond:
|
|
results.append(all(check_condition(prompt, cond, rating) for cond in sub_cond.split('&')))
|
|
elif '|' in sub_cond:
|
|
results.append(any(check_condition(prompt, cond, rating) for cond in sub_cond.split('|')))
|
|
else:
|
|
if sub_cond in ['e', 'q', 's', 'g']:
|
|
results.append(sub_cond == rating)
|
|
elif sub_cond in ['~e', '~q', '~s', '~g']:
|
|
results.append(sub_cond != rating)
|
|
|
|
elif sub_cond.startswith('*'):
|
|
results.append(sub_cond[1:] in prompt)
|
|
|
|
elif sub_cond.startswith('~!'):
|
|
results.append(sub_cond[2:] not in prompt)
|
|
elif sub_cond.startswith('~'):
|
|
results.append(any(sub_cond[1:] not in element for element in prompt))
|
|
|
|
else:
|
|
results.append(any(sub_cond in element for element in prompt))
|
|
return all(results)
|
|
def execute_command(negative, command):
|
|
if '+=' in command:
|
|
keyword, addition = command.split('+=', 1)
|
|
addition = addition.replace('^', ', ')
|
|
return insert_text_after_keyword(negative, keyword, addition)
|
|
elif command.startswith('add '):
|
|
keyword = command[4:]
|
|
keyword = keyword.replace('^', ', ')
|
|
keys = keyword.split(',')
|
|
keys = [key.strip() for key in keys]
|
|
for key in keys:
|
|
if key not in negative:
|
|
negative.append(key)
|
|
return negative
|
|
elif command.startswith('rem '):
|
|
keyword = command[4:]
|
|
keyword = keyword.replace('^', ', ')
|
|
keys = keyword.split(',')
|
|
keys = [key.strip() for key in keys]
|
|
for key in keys:
|
|
if key in negative:
|
|
negative.remove(key)
|
|
return negative
|
|
elif '=' in command:
|
|
keyword, replacement = command.split('=', 1)
|
|
if keyword in negative:
|
|
replacement = replacement.replace('^', ', ')
|
|
index = negative.index(keyword)
|
|
negative[index] = replacement
|
|
return negative
|
|
negative = negative.split(',')
|
|
negative = [neg.strip() for neg in negative]
|
|
prompt = _prompt.split(',')
|
|
prompt = [key.strip() for key in prompt]
|
|
commands = [cmd.strip() for cmd in user_input.split(',') if not cmd.strip().startswith('#')]
|
|
for command in commands:
|
|
condition, cmd = parse_conditional_command(command)
|
|
if check_condition(prompt, condition, rating):
|
|
negative = execute_command(negative, cmd)
|
|
return ', '.join(negative)
|
|
|
|
def image_to_base64(image):
|
|
image_bytesIO = io.BytesIO()
|
|
image.save(image_bytesIO, format="PNG")
|
|
return base64.b64encode(image_bytesIO.getvalue()).decode()
|
|
|
|
def make_turbo_prompt(gen_request):
|
|
lines = gen_request['prompt']
|
|
result = {
|
|
"boys": False,
|
|
"girls": False,
|
|
"1girl": False,
|
|
"1boy": False,
|
|
"1other": False,
|
|
"others": False
|
|
}
|
|
state = {
|
|
"nude,": False,
|
|
"pov,": False,
|
|
"cum,": False,
|
|
"after ": False,
|
|
"pussy juice": False,
|
|
"barefoot": False,
|
|
"breasts": False,
|
|
"ejaculation": False,
|
|
}
|
|
|
|
def insert_spaces(source_list, reference_list):
|
|
modified_list = source_list.copy()
|
|
for index, keyword in enumerate(reference_list):
|
|
if keyword not in source_list:
|
|
space_count = len(keyword)
|
|
modified_list.insert(index, ' ' * space_count)
|
|
return modified_list
|
|
|
|
keywords = gen_request['prompt'].split(', ')
|
|
filtered_keywords = []
|
|
removed_indices = []
|
|
positive0, positive1, positive2, positive3 = gen_request.copy(),gen_request.copy(),gen_request.copy(),gen_request.copy()
|
|
|
|
for word in result.keys():
|
|
if word in lines:
|
|
result[word] = True
|
|
for word in state.keys():
|
|
if word in gen_request['prompt']:
|
|
state[word] = True
|
|
|
|
key_index = int((len(keywords)/2)-1)
|
|
|
|
if(result["1boy"]) or (result["boys"]):
|
|
if(result["1girl"]):
|
|
if(', sex' in gen_request['prompt'] or 'group sex' in gen_request['prompt']):
|
|
sex_pos_keywords = ['stomach bulge','insertion', 'fucked silly', 'x-ray', 'orgasm', 'cross-section', 'uterus', 'overflow', 'rape', 'vaginal', 'anal']
|
|
facial_keywords = ['tongue','ahegao']
|
|
temp_sex_pos = []
|
|
temp_facial = []
|
|
cum_events = []
|
|
explicit_check = []
|
|
if 'open mouth' in keywords: keywords.remove('open mouth')
|
|
if 'closed mouth' in keywords: keywords.remove('closed mouth')
|
|
if 'after rape' in keywords:
|
|
keywords.remove('after rape')
|
|
explicit_check.append('after rape')
|
|
if 'used condom' in keywords:
|
|
keywords.remove('used condom')
|
|
explicit_check.append('used condom')
|
|
for keyword in keywords:
|
|
if ('sex' not in keyword and 'cum' not in keyword and 'ejaculation' not in keyword and 'vaginal' not in keyword and 'penetration' not in keyword) and all(sex_pos not in keyword for sex_pos in sex_pos_keywords) and all(facial not in keyword for facial in facial_keywords):
|
|
filtered_keywords.append(keyword)
|
|
elif 'sex' in keyword:
|
|
removed_indices.append(keyword)
|
|
elif 'penetration' in keyword:
|
|
removed_indices.append(keyword)
|
|
elif 'cum' in keyword and keyword != 'cum':
|
|
cum_events.append(keyword)
|
|
elif any(sex_pos in keyword for sex_pos in sex_pos_keywords):
|
|
for sex_pos in sex_pos_keywords:
|
|
if sex_pos in keyword:
|
|
temp_sex_pos.append(sex_pos)
|
|
elif any(facial not in keyword for facial in facial_keywords):
|
|
for facial in facial_keywords:
|
|
if facial in keyword:
|
|
temp_facial.append(facial)
|
|
filtered_keywords.insert(int((len(filtered_keywords)/2)-1), ' no penetration, imminent penetration')
|
|
filtered_keywords_positive0 = filtered_keywords.copy()
|
|
filtered_keywords.remove(' no penetration, imminent penetration')
|
|
|
|
if 'condom' in filtered_keywords and 'condom on penis' not in filtered_keywords:
|
|
t_index = filtered_keywords.index('condom')
|
|
rand_num = random.randint(0,2)
|
|
if rand_num == 1: filtered_keywords.insert(t_index, 'condom on penis')
|
|
for i, keyword in enumerate(filtered_keywords):
|
|
if 'pantyhose' in keyword:
|
|
filtered_keywords[i] = 'torn ' + filtered_keywords[i]
|
|
|
|
key_index = int((len(filtered_keywords)/2)-1)
|
|
if 'pussy' in filtered_keywords: key_index = filtered_keywords.index('pussy')
|
|
if 'penis' in filtered_keywords: key_index = filtered_keywords.index('penis')
|
|
filtered_keywords[key_index:key_index] = ['motion lines', 'surprised']
|
|
for keyword in removed_indices:
|
|
if 'cum' not in keyword and 'ejaculation' not in keyword:
|
|
filtered_keywords.insert(key_index,keyword)
|
|
if(temp_sex_pos): filtered_keywords[key_index:key_index] = temp_sex_pos
|
|
if 'group sex' in filtered_keywords and 'sex' not in filtered_keywords:
|
|
t_index = filtered_keywords.index('group sex')
|
|
filtered_keywords.insert(t_index, 'sex')
|
|
if('clothed sex' in filtered_keywords and not 'bottomless' in filtered_keywords): filtered_keywords.insert(filtered_keywords.index('clothed sex')+1, 'bottomless')
|
|
pos1_copied_keywords = filtered_keywords.copy()
|
|
for i, keyword in enumerate(pos1_copied_keywords):
|
|
if 'closed eyes' in keyword:
|
|
rand_num = random.randint(0,2)
|
|
if(rand_num == 0): pos1_copied_keywords[i] = 'half-' + pos1_copied_keywords[i]
|
|
elif(rand_num == 1 and 'closed eyes' in pos1_copied_keywords):
|
|
pos1_copied_keywords.remove('closed eyes')
|
|
filtered_keywords[i] = 'half-closed eyes'
|
|
filtered_keywords_positive1 = pos1_copied_keywords.copy()
|
|
|
|
key_index = filtered_keywords.index('surprised')
|
|
filtered_keywords.remove('surprised')
|
|
filtered_keywords[key_index:key_index] = ["ejaculation","cum"] if "condom on penis" not in filtered_keywords else ["twitching penis", "[[[[orgasm]]]]"]
|
|
for keyword in removed_indices:
|
|
if 'cum' in keyword:
|
|
filtered_keywords.insert(key_index,keyword)
|
|
if(temp_facial): filtered_keywords[key_index:key_index] =temp_facial
|
|
filtered_keywords_positive2 = filtered_keywords.copy()
|
|
|
|
for i, keyword in enumerate(filtered_keywords):
|
|
if 'closed eyes' in keyword:
|
|
rand_num = random.randint(0,2)
|
|
if(rand_num == 0 and filtered_keywords[i] != 'half-closed eyes'): filtered_keywords[i] = 'half-' + filtered_keywords[i]
|
|
elif(rand_num == 1): filtered_keywords[i] = 'empty eyes'
|
|
else: filtered_keywords[i] = 'empty eyes, half-closed eyes'
|
|
if 'sex' in filtered_keywords:
|
|
key_index = filtered_keywords.index('sex')
|
|
elif 'group sex' in filtered_keywords:
|
|
key_index = filtered_keywords.index('group sex')
|
|
if "condom on penis" not in filtered_keywords: filtered_keywords.remove('ejaculation')
|
|
else:
|
|
filtered_keywords.remove('twitching penis')
|
|
filtered_keywords.remove('[[[[orgasm]]]]')
|
|
filtered_keywords[key_index:key_index] = ['cum drip', 'erection'] + cum_events if "condom on penis" not in filtered_keywords else ["used condom", "{{used condom on penis}}"]
|
|
if(explicit_check): filtered_keywords[key_index:key_index] = explicit_check
|
|
if 'sex' in filtered_keywords and 'group sex' not in filtered_keywords:
|
|
if('pussy' in filtered_keywords and not 'anal' in filtered_keywords):
|
|
if "condom on penis" not in filtered_keywords: filtered_keywords.insert(filtered_keywords.index('sex')+1, 'after vaginal, spread pussy')
|
|
else: filtered_keywords.insert(filtered_keywords.index('sex')+1, 'after vaginal, spread pussy, pussy juice puddle')
|
|
elif('anal' in filtered_keywords):
|
|
if "condom on penis" not in filtered_keywords: filtered_keywords.insert(filtered_keywords.index('sex')+1, 'after anal, cum in ass')
|
|
else: filtered_keywords.insert(filtered_keywords.index('sex')+1, 'after anal, pussy juice')
|
|
filtered_keywords.insert(filtered_keywords.index('sex'), 'after sex')
|
|
filtered_keywords.remove('sex')
|
|
elif 'group sex' in filtered_keywords:
|
|
if('vaginal' in filtered_keywords and not 'anal' in filtered_keywords):
|
|
filtered_keywords.insert(filtered_keywords.index('group sex')+1, 'after vaginal, spread pussy')
|
|
if 'multiple penises' in filtered_keywords:
|
|
if "condom on penis" not in filtered_keywords: filtered_keywords.insert(filtered_keywords.index('group sex')+3, 'cum on body, bukkake')
|
|
else: filtered_keywords.insert(filtered_keywords.index('group sex')+3, 'pussy juice, pussy juice puddle')
|
|
elif('anal' in filtered_keywords):
|
|
if "condom on penis" not in filtered_keywords: filtered_keywords.insert(filtered_keywords.index('group sex')+1, 'after anus, cum in ass')
|
|
else: filtered_keywords.insert(filtered_keywords.index('group sex')+1, 'after anus')
|
|
if 'multiple penises' in filtered_keywords:
|
|
if "condom on penis" not in filtered_keywords: filtered_keywords.insert(filtered_keywords.index('group sex')+3, 'cum on body, bukkake')
|
|
else: filtered_keywords.insert(filtered_keywords.index('group sex')+3, 'pussy juice')
|
|
else: filtered_keywords.insert(filtered_keywords.index('group sex')+1, 'cum on body, {bukkake}')
|
|
temp_post_keyword = []
|
|
for keyword in sex_pos_keywords:
|
|
if not (keyword == 'orgasm' or keyword == 'overflow'):
|
|
if keyword in filtered_keywords:
|
|
temp_post_keyword.append(keyword)
|
|
for keyword in temp_post_keyword:
|
|
filtered_keywords.remove(keyword)
|
|
|
|
positive0['prompt'] = ', '.join(insert_spaces(filtered_keywords_positive0, filtered_keywords)).strip()
|
|
positive1['prompt'] = ', '.join(insert_spaces(filtered_keywords_positive1, filtered_keywords)).strip()
|
|
positive2['prompt'] = ', '.join(insert_spaces(filtered_keywords_positive2, filtered_keywords)).strip()
|
|
positive3['prompt'] = ', '.join(filtered_keywords).strip()
|
|
positive0["type"] = "turbo"
|
|
positive1["type"] = "turbo"
|
|
positive2["type"] = "turbo"
|
|
positive3["type"] = "turbo"
|
|
return positive0, positive1, positive2, positive3
|
|
|
|
def generate_image(access_token, prompt, model, action, parameters):
|
|
if re.match(r'^http[s]?://', access_token):
|
|
return generate_image_webui(access_token, prompt, model, action, parameters)
|
|
return generate_image_NAI(access_token, prompt, model, action, parameters)
|
|
|
|
def generate_image_NAI(access_token, prompt, model, action, parameters):
|
|
data = {
|
|
"input": prompt,
|
|
"model": model,
|
|
"action": action,
|
|
"parameters": parameters,
|
|
}
|
|
|
|
if "fts1" in parameters:
|
|
data["input"] = parameters["fts1"] + data["input"]
|
|
|
|
if data['parameters']['qualityToggle'] == True:
|
|
if "nai-diffusion-furry-3" not in data['model']:
|
|
data['input'] += ', best quality, amazing quality, very aesthetic, absurdres'
|
|
elif 'nai-diffusion-4' in data["model"]:
|
|
data['input'] +=", best quality, amazing quality, very aesthetic, absurdres, year 2024"
|
|
else:
|
|
data['input'] += ', {best quality}, {amazing quality}'
|
|
|
|
if data['parameters']['sampler'] not in ["k_euler", "k_euler_ancestral", "k_dpmpp_sde", "k_dpmpp_2s_ancestral", "k_dpmpp_2m", "k_dpmpp_2m_sde"]:
|
|
data['parameters']['sampler'] = "k_euler_ancestral"
|
|
|
|
if data['parameters']['cfg_rescale'] > 1:
|
|
data['parameters']['cfg_rescale'] = 0
|
|
|
|
if 'nai-diffusion-4' in data["model"]:
|
|
data['parameters']['params_version'] = 3
|
|
data['parameters']['add_original_image'] = True
|
|
data['parameters']['characterPrompts'] = []
|
|
data['parameters']['legacy'] = False
|
|
data['parameters']['legacy_v3_extend'] = False
|
|
data['parameters']['prefer_brownian'] = True
|
|
data['parameters']['ucPreset'] = 0
|
|
data['parameters']['use_coords'] = False
|
|
del data['parameters']['sm']
|
|
del data['parameters']['sm_dyn']
|
|
del data['parameters']['enable_hr']
|
|
del data['parameters']['enable_AD']
|
|
if "skip_cfg_above_sigma" in data['parameters']: del data['parameters']['skip_cfg_above_sigma']
|
|
data['parameters']['v4_negative_prompt'] = {
|
|
'caption' : {
|
|
'base_caption' : data["parameters"]['negative_prompt'],
|
|
'char_captions' : []
|
|
},
|
|
}
|
|
data['parameters']['v4_prompt'] = {
|
|
'caption' : {
|
|
'base_caption' : data['input'],
|
|
'char_captions' : []
|
|
},
|
|
'use_coords' : False,
|
|
'use_order' : True
|
|
}
|
|
main_pr = [k.strip() for k in data['input'].split(', ')]
|
|
sub_pr = []
|
|
if 'characters' in data['parameters'] and data['parameters']['characters'][0] != '':
|
|
for i, k in enumerate(data['parameters']['characters']):
|
|
_dict = {
|
|
"center": {
|
|
"x": 0.5,
|
|
"y": 0.5
|
|
},
|
|
"prompt": k,
|
|
"uc": data['parameters']['characters_uc'][i]
|
|
}
|
|
for _k in k.split(','):
|
|
sub_pr.append(_k.strip())
|
|
data['parameters']['characterPrompts'].append(_dict.copy())
|
|
del _dict["uc"]
|
|
_dict["centers"] = [ _dict["center"].copy() ]
|
|
del _dict["center"]
|
|
_dict['char_caption'] = _dict['prompt']
|
|
del _dict['prompt']
|
|
data['parameters']['v4_prompt']['caption']['char_captions'].append(_dict.copy())
|
|
_dict['char_caption'] = data['parameters']['characters_uc'][i]
|
|
data['parameters']['v4_negative_prompt']['caption']['char_captions'].append(_dict.copy())
|
|
del data['parameters']['characters']
|
|
del data['parameters']['characters_uc']
|
|
main_pr = [prompt for prompt in main_pr if prompt not in sub_pr]
|
|
main_pr = ', '.join(main_pr)
|
|
data['input'] = main_pr
|
|
data['parameters']['v4_prompt']['caption']['base_caption'] = main_pr
|
|
|
|
response = requests.post(f"{BASE_URL}/ai/generate-image", json=data, headers={ "Authorization": f"Bearer {access_token}" }, timeout=180)
|
|
|
|
return response.content
|
|
|
|
def augment_image_NAI(gen_request):
|
|
def resize_and_fill(image, max_size=None):
|
|
if max_size is None:
|
|
max_size = gen_request["user_screen_size"]
|
|
original_width, original_height = image.size
|
|
if original_width > max_size or original_height > max_size:
|
|
|
|
image.thumbnail((max_size, max_size))
|
|
|
|
|
|
width, height = image.size
|
|
new_image = Image.new("RGB", (max_size, max_size), "black")
|
|
new_image.paste(image, ((max_size - width) // 2, (max_size - height) // 2))
|
|
return new_image
|
|
else:
|
|
return image
|
|
def log_error(e, output_file_path="output_file_path"):
|
|
|
|
current_time = datetime.now().strftime("%m/%d %H:%M:%S")
|
|
|
|
|
|
error_message = f"#### Error occured at {current_time} ####\nError: {e}\n############################################\n"
|
|
|
|
|
|
with open(f"error_log.txt", "a") as file:
|
|
file.write(error_message)
|
|
access_token = gen_request["access_token"]
|
|
mode = gen_request["mode"]
|
|
defry = gen_request["defry"]
|
|
prompt = gen_request["prompt"]
|
|
iw = gen_request["width"]
|
|
ih = gen_request["height"]
|
|
image = gen_request["image"]
|
|
if mode in ["declutter", "lineart", "sketch", "colorize"]: _mode = mode
|
|
else:
|
|
_mode = "emotion"
|
|
mode = mode.lower()
|
|
data = {
|
|
"req_type": _mode,
|
|
"width": iw,
|
|
"height": ih,
|
|
"image" : image_to_base64(image)
|
|
}
|
|
dfval = {
|
|
"Normal" : 0,
|
|
"Slightly Weak" : 1,
|
|
"Weak" : 2,
|
|
"Even Weaker" : 3,
|
|
"Very Weak" : 4,
|
|
"Weakest" : 5
|
|
}
|
|
if _mode == "emotion":
|
|
try: data["prompt"] = mode+";;"+prompt+";"
|
|
except: data["prompt"] = mode+";"
|
|
try: data["defry"] = dfval[defry]
|
|
except: data["defry"] = 0
|
|
prompt = data["prompt"]
|
|
elif _mode == "colorize":
|
|
data["prompt"] = prompt
|
|
try: data["defry"] = dfval[defry]
|
|
except: data["defry"] = 0
|
|
else:
|
|
prompt = ""
|
|
start_time = time.time()
|
|
print(access_token[:10])
|
|
aug_response = requests.post(f"{BASE_URL}/ai/augment-image", json=data, headers={ "Authorization": f"Bearer {access_token}" }, timeout=180)
|
|
save_folder = gen_request["save_folder"]
|
|
additional_folder = ''
|
|
if gen_request["png_rule"] == "count":
|
|
additional_folder = "/" + gen_request["start_time"]
|
|
if "additional_save_folder" in gen_request:
|
|
if gen_request["additional_save_folder"]["command1"] != "":
|
|
additional_folder += "/" + gen_request["additional_save_folder"]["command1"].replace('/',"_")
|
|
if gen_request["additional_save_folder"]["command2"] != "":
|
|
additional_folder += "/" + gen_request["additional_save_folder"]["command2"].replace('/',"_")
|
|
forbidden_chars = r'[\\:*?"<>|]'
|
|
additional_folder = re.sub(forbidden_chars, '_', additional_folder).strip()
|
|
additional_folder += "/director"
|
|
if len(additional_folder) > 200: additional_folder = additional_folder[:200]
|
|
d = Path(save_folder + additional_folder)
|
|
d.mkdir(parents=True, exist_ok=True)
|
|
try:
|
|
zipped = zipfile.ZipFile(io.BytesIO(aug_response.content))
|
|
end_time = time.time()
|
|
response_time = round(end_time - start_time, 2)
|
|
result_list = []
|
|
for idx, file_info in enumerate(zipped.infolist()):
|
|
image_bytes = zipped.read(file_info)
|
|
if gen_request["png_rule"] == "count":
|
|
_count = gen_request["count"]
|
|
if "batch_size" in gen_request: filename = (d / f"{_count:05}_{idx}.png" )
|
|
else: filename = (d / f"{_count:05}.png" )
|
|
else:
|
|
if "batch_size" in gen_request: filename = (d / f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{idx}.png" )
|
|
else: filename = (d / f"{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" )
|
|
filename.write_bytes(image_bytes)
|
|
i = Image.open(io.BytesIO(image_bytes))
|
|
i = ImageOps.exif_transpose(i).convert("RGB")
|
|
if "artist" not in gen_request:
|
|
i_resized = resize_and_fill(i)
|
|
next = i_resized, prompt, 0, i.info, str(filename)
|
|
result_list.append(next)
|
|
return i_resized, prompt, 0, i.info, str(filename) if len(result_list) ==1 else result_list, response_time
|
|
except Exception as e:
|
|
end_time = time.time()
|
|
response_time = round(end_time - start_time, 2)
|
|
try:
|
|
if aug_response.content is None:
|
|
raise ValueError("Connection broken (Protocol Error)")
|
|
error_message = aug_response.decode('utf-8')[2:-2]
|
|
except Exception as inner_exception:
|
|
error_message = str(inner_exception)
|
|
log_error(error_message, "path_to_output_folder")
|
|
return None, error_message, 0, None, None, response_time
|
|
|
|
def upscale_NAI(access_token, image, gen_request):
|
|
def resize_and_fill(image, max_size=None):
|
|
if max_size is None:
|
|
max_size = gen_request["user_screen_size"]
|
|
original_width, original_height = image.size
|
|
if original_width > max_size or original_height > max_size:
|
|
|
|
image.thumbnail((max_size, max_size))
|
|
|
|
|
|
width, height = image.size
|
|
new_image = Image.new("RGB", (max_size, max_size), "black")
|
|
new_image.paste(image, ((max_size - width) // 2, (max_size - height) // 2))
|
|
return new_image
|
|
else:
|
|
return image
|
|
def log_error(e, output_file_path="output_file_path"):
|
|
|
|
current_time = datetime.now().strftime("%m/%d %H:%M:%S")
|
|
|
|
|
|
error_message = f"#### Error occured at {current_time} ####\nError: {e}\n############################################\n"
|
|
|
|
|
|
with open(f"error_log.txt", "a") as file:
|
|
file.write(error_message)
|
|
img_str = image_to_base64(image)
|
|
_width, _height = image.size
|
|
data = {
|
|
"image": img_str,
|
|
"width": _width,
|
|
"height": _height,
|
|
"scale": 2,
|
|
}
|
|
response = requests.post(f"https://api.novelai.net/ai/upscale", json=data, headers={ "Authorization": f"Bearer {access_token}" })
|
|
save_folder = gen_request["save_folder"]
|
|
additional_folder = ''
|
|
if gen_request["png_rule"] == "count":
|
|
additional_folder = "/" + gen_request["start_time"]
|
|
additional_folder += "/upscale"
|
|
if len(additional_folder) > 200: additional_folder = additional_folder[:200]
|
|
d = Path(save_folder + additional_folder)
|
|
forbidden_chars = r'[\\:*?"<>|]'
|
|
additional_folder = re.sub(forbidden_chars, '_', additional_folder).strip()
|
|
d.mkdir(parents=True, exist_ok=True)
|
|
try:
|
|
zipped = zipfile.ZipFile(io.BytesIO(response.content))
|
|
result_list = []
|
|
for idx, file_info in enumerate(zipped.infolist()):
|
|
image_bytes = zipped.read(file_info)
|
|
if gen_request["png_rule"] == "count":
|
|
_count = gen_request["count"]
|
|
filename = (d / f"{_count:05}.png" )
|
|
else:
|
|
filename = (d / f"{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" )
|
|
filename.write_bytes(image_bytes)
|
|
i = Image.open(io.BytesIO(image_bytes))
|
|
i = ImageOps.exif_transpose(i).convert("RGB")
|
|
if "artist" not in gen_request:
|
|
i_resized = resize_and_fill(i)
|
|
next = i_resized, gen_request["prompt"], 0, i.info, str(filename)
|
|
result_list.append(next)
|
|
return i_resized, gen_request["prompt"], 0, i.info, str(filename) if len(result_list) ==1 else result_list
|
|
except Exception as e:
|
|
try:
|
|
if response.content is None:
|
|
raise ValueError("Connection broken (Protocol Error)")
|
|
error_message = response.decode('utf-8')[2:-2]
|
|
except Exception as inner_exception:
|
|
error_message = str(inner_exception)
|
|
log_error(error_message, "path_to_output_folder")
|
|
return None, error_message, 0, None, None
|
|
|
|
|
|
def convert_prompt(prompt):
|
|
keywords = [keyword.strip() for keyword in prompt.split(',')]
|
|
converted_keywords = []
|
|
for keyword in keywords:
|
|
|
|
|
|
|
|
|
|
if '{' in keyword:
|
|
keyword = keyword.replace('{', '(').replace('}', ')')
|
|
converted_keywords.append(keyword)
|
|
return ', '.join(converted_keywords)
|
|
|
|
def convert_prompt_ad(prompt, data):
|
|
keywords = [keyword.strip() for keyword in prompt.split(',')]
|
|
converted_keywords = []
|
|
closed_eyes_check = False if "closed eyes" not in keywords else True
|
|
for idx, keyword in enumerate(keywords):
|
|
if idx > 4 and (keyword in data.bag_of_tags):
|
|
if ("eyes" in keyword or "pupils" in keyword) and closed_eyes_check:
|
|
continue
|
|
keywords[idx] = "((" + keyword + "))"
|
|
if 'artist:' in keyword:
|
|
keyword = keyword.replace('artist:', '').replace('[','').replace(']','')
|
|
keyword = keyword
|
|
if '(' in keyword:
|
|
keyword = keyword.replace('(', '\(').replace(')', '\)')
|
|
if '{' in keyword:
|
|
keyword = keyword.replace('{', '(').replace('}', ')')
|
|
if '}' in keyword:
|
|
keyword = keyword.replace('}', ')')
|
|
converted_keywords.append(keyword)
|
|
return ', '.join(converted_keywords)
|
|
|
|
def interrogate_webui(img, access_token):
|
|
img_str = image_to_base64(img)
|
|
|
|
req_img = {
|
|
"image": img_str,
|
|
"threshold": 0.35,
|
|
"model": "wd-v1-4-moat-tagger.v2",
|
|
"queue": ""
|
|
}
|
|
|
|
try:
|
|
res = requests.post(f"{access_token}/tagger/v1/interrogate", json=req_img)
|
|
if res.status_code != 200:
|
|
raise Exception(f"Error code: {res.status_code}")
|
|
|
|
text = res.json().get('caption', {}).get('tag', {})
|
|
text_list = [txt.replace("_", " ") for txt in text.keys()]
|
|
_rating = res.json().get('caption', {}).get('rating', {})
|
|
rating = max(_rating, key=_rating.get)
|
|
if rating == "sensitive": rv = "s"
|
|
elif rating == "questionable": rv = "q"
|
|
elif rating == "explicit": rv = "e"
|
|
else: rv = "g"
|
|
return ", ".join(text_list), rv
|
|
except Exception as e:
|
|
return f"{e} : WEBUI์ Extension์ stable-diffusion-webui-wd14-tagger ๊ฐ ์ ์์ ์ผ๋ก ์ค์น๋์ด์๋์ง ํ์ธํ์ธ์. (WD14 ๊ธฐ์ค๋ฒ์ : e72d984b, 2023-11-04)", None
|
|
|
|
def generate_image_webui(access_token, prompt, model, action, parameters):
|
|
try:
|
|
samplers = {
|
|
"k_euler": "Euler",
|
|
"k_euler_ancestral": "Euler a",
|
|
"k_dpmpp_2s_ancestral": "DPM++ 2S a",
|
|
"k_dpmpp_sde": "DPM++ SDE",
|
|
"k_dpm_3m_sde": "DPM++ 3M SDE"
|
|
}
|
|
|
|
|
|
data = {
|
|
"input": prompt,
|
|
"model": model,
|
|
"action": action,
|
|
"parameters": parameters,
|
|
}
|
|
|
|
if data['parameters']['sampler'] in samplers:
|
|
data['parameters']['sampler'] = samplers[data['parameters']['sampler']]
|
|
|
|
params = {
|
|
"prompt": convert_prompt(data['input']) if "nai_enable_AD" not in parameters else convert_prompt_ad(data['input'], parameters["ad_data"]),
|
|
"negative_prompt": convert_prompt(data['parameters']['negative_prompt']) if "nai_enable_AD" not in parameters else convert_prompt_ad(data['parameters']['negative_prompt'], parameters["ad_data"]),
|
|
"steps": math.floor(data['parameters']['cfg_rescale'] / 0.5) * 0.5 if "nai-diffusion" not in model else data['parameters']['steps'],
|
|
"width": data['parameters']['width'],
|
|
"height": data['parameters']['height'],
|
|
"cfg_scale": data['parameters']['scale'],
|
|
"sampler_index": data['parameters']['sampler'],
|
|
"sampler_name": data['parameters']['sampler'],
|
|
"seed": data['parameters']['seed'],
|
|
"seed_resize_from_h": -1,
|
|
"seed_resize_from_w": -1,
|
|
"denoising_strength": None if "denoising_strength" not in parameters else parameters["denoising_strength"],
|
|
"n_iter": "1",
|
|
"batch_size": data['parameters']['n_samples']
|
|
}
|
|
|
|
if "sampler_awai" in parameters:
|
|
data['parameters']['sampler'] = parameters["sampler_awai"]
|
|
params["sampler_index"] = parameters["sampler_awai"]
|
|
|
|
if 'scheduler' in parameters:
|
|
params["scheduler"] = data['parameters']['scheduler']
|
|
|
|
if "scheduler_awai" in parameters:
|
|
params["scheduler"] = parameters["scheduler_awai"]
|
|
|
|
if data['parameters']['enable_hr'] == True:
|
|
params['enable_hr'] = True
|
|
params["hr_upscaler"] = data['parameters']["hr_upscaler"]
|
|
params["hr_scale"] = data['parameters']["hr_scale"]
|
|
params["hr_second_pass_steps"] = data['parameters']["hr_second_pass_steps"]
|
|
params["denoising_strength"] = data['parameters']["denoising_strength"]
|
|
|
|
|
|
params["hr_scheduler"] = "Automatic"
|
|
params["hr_prompt"] = params["prompt"]
|
|
params["hr_negative_prompt"] = params["negative_prompt"]
|
|
if params["height"] * params["width"] > 1048576:
|
|
params["width"], params["height"] = find_max_resolution(params["width"], params["height"])
|
|
|
|
if data['parameters']['enable_AD'] == True:
|
|
params["alwayson_scripts"] = {"ADetailer":
|
|
{
|
|
"args": [
|
|
True,
|
|
False if ("nai_enable_AD" not in parameters or "denoising_strength" in parameters) else True,
|
|
{
|
|
"ad_cfg_scale": data['parameters']['scale'],
|
|
"ad_checkpoint": "Use same checkpoint",
|
|
"ad_clip_skip": 1,
|
|
"ad_confidence": 0.3,
|
|
"ad_controlnet_guidance_end": 1,
|
|
"ad_controlnet_guidance_start": 0,
|
|
"ad_controlnet_model": "None",
|
|
"ad_controlnet_module": "None",
|
|
"ad_controlnet_weight": 1,
|
|
"ad_denoising_strength": 0.4 if "nai_enable_AD" not in parameters else parameters["ad_data_str"],
|
|
"ad_dilate_erode": 4,
|
|
"ad_inpaint_height": 768,
|
|
"ad_inpaint_only_masked": True,
|
|
"ad_inpaint_only_masked_padding": 32,
|
|
"ad_inpaint_width": 768,
|
|
"ad_mask_blur": 4,
|
|
"ad_mask_filter_method": "Area",
|
|
"ad_mask_k": 0,
|
|
"ad_mask_max_ratio": 1,
|
|
"ad_mask_merge_invert": "None",
|
|
"ad_mask_min_ratio": 0,
|
|
"ad_model": "face_yolov8n.pt",
|
|
"ad_model_classes": "",
|
|
"ad_negative_prompt": params["negative_prompt"],
|
|
"ad_noise_multiplier": 1,
|
|
"ad_prompt": params["prompt"],
|
|
"ad_restore_face": False,
|
|
"ad_sampler": data['parameters']['sampler'],
|
|
"ad_scheduler": "Use same scheduler",
|
|
"ad_steps": params["steps"],
|
|
"ad_tab_enable": True,
|
|
"ad_use_cfg_scale": False,
|
|
"ad_use_checkpoint": False,
|
|
"ad_use_clip_skip": False,
|
|
"ad_use_inpaint_width_height": True,
|
|
"ad_use_noise_multiplier": False,
|
|
"ad_use_sampler": False,
|
|
"ad_use_steps": False,
|
|
"ad_use_vae": False,
|
|
"ad_vae": "Use same VAE",
|
|
"ad_x_offset": 0,
|
|
"ad_y_offset": 0,
|
|
"is_api": True
|
|
},
|
|
]
|
|
}
|
|
}
|
|
if "nai_enable_AD" in parameters:
|
|
params["steps"] = 28
|
|
else:
|
|
params["alwayson_scripts"] = {}
|
|
if 'enable_TV' in data['parameters'] and data['parameters']['enable_TV'] == True:
|
|
params["alwayson_scripts"]["Tiled VAE"] = {}
|
|
params["alwayson_scripts"]["Tiled VAE"]["args"] = data['parameters']["tiled_vae_args"]
|
|
|
|
if 'pag' in parameters:
|
|
params["alwayson_scripts"]["Incantations"] = {}
|
|
pag_pre = math.floor(float(data['parameters']['pag']) / 0.5) * 0.5
|
|
params["alwayson_scripts"]["Incantations"]["args"] = [True,pag_pre, 0, 150, False, "Constant", 0, 100, False,False,2,0.1,0.5,0,"",0,25, 1, False,False,False,"BREAK","-",0.2,10]
|
|
|
|
if "image" in data['parameters']:
|
|
params['init_images'] = [data['parameters']['image']]
|
|
params['include_init_images'] = True
|
|
|
|
if "strength" in data['parameters']:
|
|
params['denoising_strength'] = data['parameters']['strength']
|
|
|
|
if 'denoising_strength' in data['parameters']:
|
|
params['denoising_strength'] = data['parameters']['denoising_strength']
|
|
params['inpainting_fill'] = 1
|
|
params["initial_noise_multiplier"] = 1
|
|
if "steps" not in params: params["steps"] = 28
|
|
|
|
if "mask" in data['parameters']:
|
|
params['mask'] = data['parameters']['mask']
|
|
params['inpainting_fill'] = 1
|
|
params['inpaint_full_res'] = data['parameters']['add_original_image']
|
|
params['inpaint_full_res_padding'] = 32
|
|
if 'denoising_strength' not in params: params['denoising_strength'] = 0.7
|
|
|
|
res = requests.post(f"{access_token}/sdapi/v1/img2img", json=params)
|
|
else: res = requests.post(f"{access_token}/sdapi/v1/txt2img", json=params)
|
|
res.raise_for_status()
|
|
|
|
try:
|
|
response_json = res.json()
|
|
except ValueError:
|
|
error_message = f"Invalid JSON response from server. Status code: {res.status_code}, Response: {res.text}"
|
|
raise RuntimeError(error_message)
|
|
|
|
if 'images' not in response_json:
|
|
error_message = f"No 'images' in response. Status code: {res.status_code}, Response: {res.text}"
|
|
raise RuntimeError(error_message)
|
|
|
|
imageb64s = res.json()['images']
|
|
if not imageb64s:
|
|
raise RuntimeError("No images generated")
|
|
content = None
|
|
for b64 in imageb64s:
|
|
img = b64.encode()
|
|
content = base64.b64decode(img)
|
|
|
|
s = io.BytesIO()
|
|
zf = zipfile.ZipFile(s, "w")
|
|
for idx, b64 in enumerate(imageb64s):
|
|
content = base64.b64decode(b64)
|
|
zf.writestr(f"generated_{idx}.png", content)
|
|
zf.close()
|
|
return s.getvalue()
|
|
except requests.exceptions.RequestException as e:
|
|
error_message = f"Network error: {str(e)}"
|
|
if hasattr(e.response, 'status_code') and hasattr(e.response, 'text'):
|
|
error_message = f"Server error {e.response.status_code}: {e.response.text}"
|
|
raise RuntimeError(error_message)
|
|
except Exception as e:
|
|
raise RuntimeError(f"Error during image generation: {str(e)}")
|
|
|
|
def generate_guide_image_webui(access_token, parameters):
|
|
samplers = {
|
|
"k_euler": "Euler",
|
|
"k_euler_ancestral": "Euler a",
|
|
"k_dpmpp_2s_ancestral": "DPM++ 2S a",
|
|
"k_dpmpp_sde": "DPM++ SDE",
|
|
"k_dpm_3m_sde": "DPM++ 3M SDE"
|
|
}
|
|
|
|
params = {
|
|
"prompt": convert_prompt(parameters['prompt']),
|
|
"negative_prompt": convert_prompt(parameters['negative prompt']),
|
|
"steps": parameters['steps'],
|
|
"width": parameters["width"],
|
|
"height": parameters["height"],
|
|
"cfg_scale": parameters['cfg_scale'],
|
|
"sampler_index": samplers[parameters['sampler']] if parameters['sampler'] in samplers else parameters['sampler'],
|
|
"seed": parameters['seed'],
|
|
"seed_resize_from_h": -1,
|
|
"seed_resize_from_w": -1,
|
|
"denoising_strength": None,
|
|
"n_iter": "1",
|
|
"batch_size": 1
|
|
}
|
|
additional_folder = "/guide"
|
|
if "start_time" in parameters and parameters["png_rule"] == "count":
|
|
additional_folder = "/" + parameters["start_time"] + "/guide"
|
|
if "save_folder" in parameters:
|
|
save_folder = parameters["save_folder"]
|
|
try:
|
|
res = requests.post(f"{access_token}/sdapi/v1/txt2img", json=params)
|
|
imageb64s = res.json()['images']
|
|
image_data = base64.b64decode(imageb64s[0])
|
|
image_file = io.BytesIO(image_data)
|
|
i = Image.open(image_file)
|
|
if "save_folder" in parameters:
|
|
s = io.BytesIO()
|
|
zf = zipfile.ZipFile(s, "w")
|
|
for idx, b64 in enumerate(imageb64s):
|
|
img_data = base64.b64decode(b64)
|
|
img = Image.open(io.BytesIO(img_data))
|
|
output = io.BytesIO()
|
|
if 'parameters' in img.info or 'exif' in img.info:
|
|
exif_dict = {"Exif": {}}
|
|
if 'parameters' in img.info: exif_dict["Exif"][piexif.ExifIFD.UserComment] = img.info['parameters'].encode('utf-8')
|
|
else:
|
|
temp = extract_prompt_info(img.info)
|
|
exif_dict["Exif"][piexif.ExifIFD.UserComment] = temp.encode('utf-8')
|
|
exif_bytes = piexif.dump(exif_dict)
|
|
img.save(output, format="JPEG", exif=exif_bytes)
|
|
else:
|
|
img.save(output, format="JPEG")
|
|
jpeg_content = output.getvalue()
|
|
zf.writestr(f"generated_{idx}.jpg", jpeg_content)
|
|
zf.close()
|
|
if len(additional_folder) > 200: additional_folder = additional_folder[:200]
|
|
forbidden_chars = r'[\\:*?"<>|]'
|
|
additional_folder = re.sub(forbidden_chars, '_', additional_folder).strip()
|
|
d = Path(save_folder + additional_folder)
|
|
d.mkdir(parents=True, exist_ok=True)
|
|
zipped = zipfile.ZipFile(io.BytesIO(s.getvalue()))
|
|
result_list = []
|
|
for idx, file_info in enumerate(zipped.infolist()):
|
|
image_bytes = zipped.read(file_info)
|
|
filename = (d / f"{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" )
|
|
filename.write_bytes(image_bytes)
|
|
except:
|
|
i = Image.new('RGB', (768, 768), 'white')
|
|
filename = ""
|
|
return i, params["prompt"], params["seed"], filename
|
|
|
|
def generate_typer_image_webui(access_token, parameters):
|
|
params = {
|
|
"prompt": convert_prompt(parameters['prompt']),
|
|
"negative_prompt": convert_prompt(parameters['negative prompt']),
|
|
"steps": parameters['steps'],
|
|
"width": parameters["width"],
|
|
"height": parameters["height"],
|
|
"cfg_scale": parameters['cfg_scale'],
|
|
"sampler_index": parameters['sampler'],
|
|
"seed": parameters['seed'],
|
|
"seed_resize_from_h": -1,
|
|
"seed_resize_from_w": -1,
|
|
"denoising_strength": None,
|
|
"n_iter": "1",
|
|
"batch_size": 1
|
|
}
|
|
if "scheduler" in parameters:
|
|
params["scheduler"] = parameters["scheduler"]
|
|
try:
|
|
res = requests.post(f"{access_token}/sdapi/v1/txt2img", json=params)
|
|
imageb64s = res.json()['images']
|
|
image_data = base64.b64decode(imageb64s[0])
|
|
image_file = io.BytesIO(image_data)
|
|
i = Image.open(image_file)
|
|
except:
|
|
i = Image.new('RGB', (768, 768), 'white')
|
|
return i
|
|
|
|
def generate_dtg(access_token, parameters):
|
|
params = {
|
|
"prompt": parameters['prompt'],
|
|
"negative_prompt": parameters['negative prompt'],
|
|
"steps": 1,
|
|
"width": 64,
|
|
"height": 64,
|
|
"cfg_scale": 1,
|
|
"sampler_index": "Euler a",
|
|
"seed": 1,
|
|
"seed_resize_from_h": -1,
|
|
"seed_resize_from_w": -1,
|
|
"denoising_strength": None,
|
|
"n_iter": "1",
|
|
"batch_size": 1,
|
|
}
|
|
if parameters["format"] == "Animagine":
|
|
format = "<|special|>, <|characters|>, <|copyrights|>, <|artist|>, <|general|>, <|quality|>, <|meta|>, <|rating|>"
|
|
elif parameters["format"] == "Pony":
|
|
format = "<|quality|>, <|special|>, <|characters|>, <|copyrights|>, <|artist|>, <|general|>, <|meta|>, <|rating|>"
|
|
|
|
params["alwayson_scripts"] = {}
|
|
params["alwayson_scripts"]["DanTagGen"] = {
|
|
"args" : [
|
|
True,
|
|
"After applying other prompt processings",
|
|
-1,
|
|
parameters["length"],
|
|
params["negative_prompt"],
|
|
format,
|
|
parameters["temp"],
|
|
0.95,
|
|
100,
|
|
"KBlueLeaf/DanTagGen-delta-rev2",
|
|
False,
|
|
False
|
|
]
|
|
}
|
|
try:
|
|
res = requests.post(f"{access_token}/sdapi/v1/txt2img", json=params)
|
|
imageb64s = res.json()['images']
|
|
image_data = base64.b64decode(imageb64s[0])
|
|
image_file = io.BytesIO(image_data)
|
|
i = Image.open(image_file)
|
|
except:
|
|
return ""
|
|
return i.info
|
|
|
|
def generate(gen_request, _naia):
|
|
def parse_and_execute_commands(_prompt, negative, user_input, rating):
|
|
negative = negative.split(',')
|
|
negative = [neg.strip() for neg in negative]
|
|
prompt = _prompt.split(',')
|
|
prompt = [key.strip() for key in prompt]
|
|
commands = [cmd.strip() for cmd in user_input.split(',') if not cmd.strip().startswith('#')]
|
|
for command in commands:
|
|
condition, cmd = parse_conditional_command(command)
|
|
if check_condition(prompt, condition, rating):
|
|
negative = execute_command(negative, cmd)
|
|
return ', '.join(negative)
|
|
|
|
def parse_conditional_command(command):
|
|
match = re.match(r"\((.*?)\)\:(.*)", command)
|
|
if match:
|
|
return match.groups()
|
|
return '', command
|
|
|
|
def check_condition(prompt, condition, rating):
|
|
if not condition:
|
|
return True
|
|
sub_conditions = re.split(r'\)\s*&\s*\(', condition)
|
|
sub_conditions = [re.sub(r'^\(|\)$', '', cond) for cond in sub_conditions]
|
|
|
|
results = []
|
|
for sub_cond in sub_conditions:
|
|
if '&' in sub_cond:
|
|
results.append(all(check_condition(prompt, cond, rating) for cond in sub_cond.split('&')))
|
|
elif '|' in sub_cond:
|
|
results.append(any(check_condition(prompt, cond, rating) for cond in sub_cond.split('|')))
|
|
else:
|
|
if sub_cond in ['e', 'q', 's', 'g']:
|
|
results.append(sub_cond == rating)
|
|
elif sub_cond in ['~e', '~q', '~s', '~g']:
|
|
results.append(sub_cond != rating)
|
|
|
|
elif sub_cond.startswith('*'):
|
|
results.append(sub_cond[1:] in prompt)
|
|
|
|
elif sub_cond.startswith('~!'):
|
|
results.append(sub_cond[2:] not in prompt)
|
|
elif sub_cond.startswith('~'):
|
|
results.append(all(sub_cond[1:] not in element for element in prompt))
|
|
|
|
else:
|
|
results.append(any(sub_cond in element for element in prompt))
|
|
return all(results)
|
|
|
|
def execute_command(negative, command):
|
|
if '+=' in command:
|
|
keyword, addition = command.split('+=', 1)
|
|
addition = addition.replace('^', ', ')
|
|
return insert_text_after_keyword(negative, keyword, addition)
|
|
elif command.startswith('add '):
|
|
keyword = command[4:]
|
|
keyword = keyword.replace('^', ', ')
|
|
keys = keyword.split(',')
|
|
keys = [key.strip() for key in keys]
|
|
for key in keys:
|
|
if key not in negative:
|
|
negative.append(key)
|
|
return negative
|
|
elif command.startswith('rem '):
|
|
keyword = command[4:]
|
|
keyword = keyword.replace('^', ', ')
|
|
keys = keyword.split(',')
|
|
keys = [key.strip() for key in keys]
|
|
for key in keys:
|
|
if key in negative:
|
|
negative.remove(key)
|
|
return negative
|
|
elif '=' in command:
|
|
keyword, replacement = command.split('=', 1)
|
|
if keyword in negative:
|
|
replacement = replacement.replace('^', ', ')
|
|
index = negative.index(keyword)
|
|
negative[index] = replacement
|
|
return negative
|
|
|
|
def insert_text_after_keyword(negative, user_keyword, user_additional_keyword):
|
|
if user_keyword in negative:
|
|
index = negative.index(user_keyword) + 1
|
|
negative.insert(index, user_additional_keyword)
|
|
return negative
|
|
|
|
def open_random_png(folderpath):
|
|
files = os.listdir(folderpath)
|
|
png_files = [f for f in files if f.endswith('.png')]
|
|
|
|
if not png_files:
|
|
return None
|
|
|
|
random_png = random.choice(png_files)
|
|
img = Image.open(os.path.join(folderpath, random_png))
|
|
|
|
return img
|
|
|
|
try: seed = int(gen_request["seed"])
|
|
except: seed = random.randint(0,9999999999)
|
|
|
|
try:
|
|
width = int(gen_request["width"])
|
|
height = int(gen_request["height"])
|
|
except:
|
|
width, height= 1024, 1024
|
|
|
|
params = {
|
|
"legacy": False,
|
|
"qualityToggle": True if gen_request["quality_toggle"] == 1 else False,
|
|
"width": width,
|
|
"height": height,
|
|
"n_samples": 1 if "batch_size" not in gen_request else gen_request["batch_size"],
|
|
"seed": seed,
|
|
"extra_noise_seed": random.randint(0,9999999999),
|
|
"sampler": gen_request["sampler"],
|
|
"steps": 28 if "steps" not in gen_request and gen_request["type"]!="upper" else gen_request["steps"],
|
|
"scale": gen_request["scale"],
|
|
"negative_prompt": ', '.join([keyword.strip() for keyword in gen_request["negative"].split(',') if not keyword.strip().startswith('#')]),
|
|
"sm" : True if gen_request["sema"] == 1 else False,
|
|
"sm_dyn" : True if gen_request["sema_dyn"] == 1 else False,
|
|
"dynamic_thresholding": True if ("dynamic_thresholding" in gen_request and gen_request["dynamic_thresholding"] == True) else False,
|
|
"controlnet_strength": 1.0,
|
|
"add_original_image": False,
|
|
"cfg_rescale": gen_request["cfg_rescale"],
|
|
"noise_schedule": gen_request["noise_schedule"],
|
|
"enable_hr" : gen_request["enable_hr"],
|
|
"enable_AD" : gen_request["enable_AD"]
|
|
}
|
|
|
|
if "fts1" in gen_request:
|
|
params["fts1"] = gen_request["fts1"] + " :" + gen_request["fts1_val"].strip() +" | "
|
|
|
|
if "skip_cfg_above_sigma" in gen_request and gen_request["skip_cfg_above_sigma"] == True:
|
|
if float(gen_request["uncond_scale"]) == 19.19:
|
|
params["skip_cfg_above_sigma"] = 19.191344202730882
|
|
else:
|
|
try:
|
|
_scale = float(gen_request["uncond_scale"])
|
|
params["skip_cfg_above_sigma"] = _scale
|
|
except:
|
|
params["skip_cfg_above_sigma"] = 19.191344202730882
|
|
|
|
if params["enable_hr"] == True:
|
|
params["hr_upscaler"] = gen_request["hr_upscaler"]
|
|
params["hr_scale"] = gen_request["hr_scale"]
|
|
params["hr_second_pass_steps"] = gen_request["hr_second_pass_steps"]
|
|
params["denoising_strength"] = gen_request["denoising_strength"]
|
|
if "enable_TV" in gen_request and gen_request["enable_TV"] == True:
|
|
params["enable_TV"] = True
|
|
params["tiled_vae_args"] = gen_request["tiled_vae_args"]
|
|
|
|
if "reference_image" in gen_request:
|
|
params["reference_image_multiple"] = gen_request["reference_image"] if isinstance(gen_request["reference_image"], list) else [gen_request["reference_image"]]
|
|
params["reference_information_extracted_multiple"] = gen_request["reference_information_extracted"] if isinstance(gen_request["reference_information_extracted"], list) else [gen_request["reference_information_extracted"]]
|
|
params["reference_strength_multiple"] = gen_request["reference_strength"] if isinstance(gen_request["reference_strength"], list) else [gen_request["reference_strength"]]
|
|
|
|
if gen_request["type"]=="inpaint":
|
|
if "mask" in gen_request:
|
|
params["mask"] = gen_request["mask"]
|
|
params['add_original_image'] = gen_request['add_original_image']
|
|
|
|
positive = gen_request["prompt"]
|
|
positive = re.sub(r'#.*?(\n|,|$)', '', positive)
|
|
keywords = [key.strip() for key in positive.split(',')]
|
|
|
|
if "cond_negative" in gen_request and gen_request["cond_negative"]:
|
|
user_input = gen_request["cond_negative"]
|
|
rating = gen_request["rating"]
|
|
params["negative_prompt"] = parse_and_execute_commands(positive, params["negative_prompt"], user_input, rating)
|
|
|
|
if "repeat" in gen_request:
|
|
max = gen_request["repeat_max"]
|
|
|
|
for i, key in enumerate(keywords):
|
|
if "->" in key:
|
|
instant_keyword = [k for k in key.split('->')]
|
|
if len(instant_keyword) > gen_request["repeat"]:
|
|
current_key = instant_keyword[gen_request["repeat"]]
|
|
else:
|
|
current_key = instant_keyword[gen_request["repeat"] % len(instant_keyword)]
|
|
keywords[i] = ', '.join(current_key.split('^'))
|
|
|
|
filename_rule = gen_request["png_rule"]
|
|
save_folder = gen_request["save_folder"]
|
|
|
|
access_token = gen_request["access_token"]
|
|
additional_folder = ""
|
|
|
|
request_type = "generate"
|
|
|
|
if "*i2i:(" in gen_request["prompt"] and "image" not in gen_request:
|
|
try:
|
|
start_index = gen_request["prompt"].index('*i2i:(') + len('*i2i:(')
|
|
end_index = gen_request["prompt"].index(')', start_index)
|
|
i2i_content = gen_request["prompt"][start_index:end_index]
|
|
_img, _str = [item.strip() for item in i2i_content.split(':')]
|
|
_str = float(_str)
|
|
_img = open_random_png(_img)
|
|
if _img:
|
|
gen_request["image"] = image_to_base64(_img)
|
|
gen_request["strength"] = _str
|
|
gen_request["noise"] = 0
|
|
except:
|
|
pass
|
|
|
|
if "nai_enable_AD" in gen_request:
|
|
params["nai_enable_AD"] = True
|
|
params["ad_data"] = gen_request["ad_data"]
|
|
params["ad_data_str"] = gen_request["ad_data_str"]
|
|
|
|
if "denoising_strength" in gen_request:
|
|
params["denoising_strength"] = gen_request["denoising_strength"]
|
|
|
|
if "scheduler" in gen_request:
|
|
params["scheduler"] = gen_request["scheduler"]
|
|
if "pag" in gen_request:
|
|
params["pag"] = gen_request["pag"]
|
|
|
|
if "image" in gen_request:
|
|
params["image"] = gen_request["image"]
|
|
if "strength" in gen_request:
|
|
params["strength"] = gen_request["strength"]
|
|
params["noise"] = gen_request["noise"]
|
|
params["sm"] = False
|
|
params["sm_dyn"] = False
|
|
request_type = "img2img" if "mask" not in gen_request else "infill"
|
|
|
|
temp_del = []
|
|
for key in keywords:
|
|
if key.startswith('*'):
|
|
temp_del.append(key)
|
|
for key in temp_del:
|
|
if key in keywords:
|
|
keywords.remove(key)
|
|
|
|
positive = ', '.join(k for k in keywords if k.strip())
|
|
|
|
def resize_and_fill(image, max_size=None):
|
|
if max_size is None:
|
|
max_size = gen_request["user_screen_size"]
|
|
original_width, original_height = image.size
|
|
if original_width > max_size or original_height > max_size:
|
|
|
|
image.thumbnail((max_size, max_size))
|
|
|
|
|
|
width, height = image.size
|
|
new_image = Image.new("RGB", (max_size, max_size), "black")
|
|
new_image.paste(image, ((max_size - width) // 2, (max_size - height) // 2))
|
|
return new_image
|
|
else:
|
|
return image
|
|
|
|
def resize_and_fill_artist(image, max_size=None, _text=""):
|
|
if _text != "":
|
|
if "_" in _text:
|
|
_text0 = _text.split("_")[0]
|
|
_text1 = _text.split("_")[1]
|
|
_text = _text1+ " : "+_text0
|
|
else:
|
|
_text1 = _text
|
|
if max_size is None:
|
|
max_size = gen_request["user_screen_size"]
|
|
original_width, original_height = image.size
|
|
max_size = (max_size, max_size)
|
|
if original_width > max_size[0] or original_height > max_size[1]:
|
|
|
|
image.thumbnail(max_size)
|
|
|
|
|
|
width, height = image.size
|
|
new_image = Image.new("RGB", (max_size[0], max_size[1]), "black")
|
|
new_image.paste(image, ((max_size[0] - width) // 2, (max_size[1] - height) // 2))
|
|
|
|
|
|
draw = ImageDraw.Draw(new_image)
|
|
font_size = 24
|
|
font = ImageFont.truetype("arial.ttf", font_size)
|
|
|
|
text_x = (max_size[0]) // 2
|
|
text_y = (max_size[1] - 40) + (font_size) // 2
|
|
bbox = draw.textbbox((text_x, text_y), _text, font=font, anchor="mm")
|
|
text_width = bbox[2] - bbox[0]
|
|
text_height = bbox[3] - bbox[1]
|
|
|
|
|
|
draw.rectangle([text_x - text_width // 2 - 10, text_y - text_height // 2 - 10, text_x + text_width // 2 + 10, text_y + text_height // 2 + 10], fill="white")
|
|
|
|
|
|
draw.text((text_x, text_y), _text, fill="black", font=font, anchor="mm")
|
|
|
|
return new_image, _text1
|
|
|
|
|
|
def log_error(e, output_file_path="output_file_path"):
|
|
|
|
current_time = datetime.now().strftime("%m/%d %H:%M:%S")
|
|
|
|
|
|
error_message = f"#### Error occured at {current_time} ####\nError: {e}\n############################################\n"
|
|
|
|
|
|
with open(f"error_log.txt", "a") as file:
|
|
file.write(error_message)
|
|
|
|
if _naia == "NAID3-Furry":
|
|
_m1 = "nai-diffusion-furry-3"
|
|
_m2 = "nai-diffusion-furry-3-inpainting"
|
|
elif _naia == "NAID4":
|
|
_m1 = "nai-diffusion-4-curated-preview"
|
|
_m2 = "nai-diffusion-3-inpainting"
|
|
if "characters" in gen_request:
|
|
params['characters'] = gen_request['characters']
|
|
params['characters_uc'] = gen_request['characters_uc']
|
|
else:
|
|
_m1 = "nai-diffusion-3"
|
|
_m2 = "nai-diffusion-3-inpainting"
|
|
|
|
if "sampler_awai" in gen_request:
|
|
params["sampler_awai"] = gen_request["sampler_awai"]
|
|
|
|
if "scheduler_awai" in gen_request:
|
|
params["scheduler_awai"] = gen_request["scheduler_awai"]
|
|
|
|
start_time = time.time()
|
|
try:
|
|
zipped_bytes = None
|
|
error_message = None
|
|
try:
|
|
zipped_bytes = generate_image(access_token, positive, _m1 if "mask" not in params else _m2, request_type, params)
|
|
end_time = time.time()
|
|
response_time = round(end_time - start_time, 2)
|
|
if gen_request["png_rule"] == "count":
|
|
additional_folder = "/" + gen_request["start_time"]
|
|
if "additional_save_folder" in gen_request:
|
|
if gen_request["additional_save_folder"]["command1"] != "":
|
|
additional_folder += "/" + gen_request["additional_save_folder"]["command1"].replace('/',"_")
|
|
if gen_request["additional_save_folder"]["command2"] != "":
|
|
additional_folder += "/" + gen_request["additional_save_folder"]["command2"].replace('/',"_")
|
|
if gen_request["type"] == "turbo":
|
|
additional_folder += "/turbo"
|
|
if ("hires" in gen_request and gen_request["hires"]) or ("enable_hr" in gen_request and gen_request["enable_hr"] and "http" in access_token) or (int(gen_request["width"]) * int(gen_request["height"]) > 1048576):
|
|
additional_folder += "/hires"
|
|
if "auto_i2i" in gen_request and gen_request["auto_i2i"]:
|
|
if gen_request["png_rule"] == "count": additional_folder = "/" + gen_request["start_time"] + "/autoi2i"
|
|
else: additional_folder = "/autoi2i"
|
|
if "nai_enable_AD" in gen_request and gen_request["nai_enable_AD"]:
|
|
additional_folder += "/Adetailer"
|
|
if "webui_nai_i2i" in gen_request and gen_request["webui_nai_i2i"] and "http" not in access_token:
|
|
additional_folder += "/webui_nai_i2i"
|
|
if len(additional_folder) > 200: additional_folder = additional_folder[:200]
|
|
forbidden_chars = r'[\\:*?"<>|]'
|
|
additional_folder = re.sub(forbidden_chars, '_', additional_folder).strip()
|
|
d = Path(save_folder + additional_folder)
|
|
d.mkdir(parents=True, exist_ok=True)
|
|
zipped = zipfile.ZipFile(io.BytesIO(zipped_bytes))
|
|
result_list = []
|
|
for idx, file_info in enumerate(zipped.infolist()):
|
|
image_bytes = zipped.read(file_info)
|
|
image_format = what(None, h=image_bytes)
|
|
if image_format is None:
|
|
if image_bytes.startswith(b'RIFF') and b'WEBP' in image_bytes[:12]:
|
|
image_format = 'webp'
|
|
else:
|
|
image_format = 'png'
|
|
if gen_request["png_rule"] == "count":
|
|
_count = gen_request["count"]
|
|
if "batch_size" in gen_request: filename = (d / f"{_count:05}_{idx}.{image_format}" )
|
|
else: filename = (d / f"{_count:05}.{image_format}" )
|
|
else:
|
|
if "batch_size" in gen_request: filename = (d / f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{idx}.{image_format}" )
|
|
else: filename = (d / f"{datetime.now().strftime('%Y%m%d_%H%M%S')}.{image_format}" )
|
|
filename.write_bytes(image_bytes)
|
|
i = Image.open(io.BytesIO(image_bytes))
|
|
i = ImageOps.exif_transpose(i).convert("RGB")
|
|
if "artist" not in gen_request:
|
|
i_resized = resize_and_fill(i)
|
|
else:
|
|
i_resized, _i_temp = resize_and_fill_artist(i, None, gen_request["artist"])
|
|
if not os.path.exists(f"artist_thumb"):
|
|
os.makedirs(f"artist_thumb")
|
|
model_name = gen_request["artist_model"]
|
|
if not os.path.exists(f"artist_thumb/{model_name}"):
|
|
os.makedirs(f"artist_thumb/{model_name}")
|
|
|
|
forbidden_chars = r'[\\/:*?"<>|]'
|
|
_i_temp = re.sub(forbidden_chars, '_', _i_temp)
|
|
i_resized.save(f"artist_thumb/{model_name}/{_i_temp}.jpg")
|
|
next = i_resized, positive, params['seed'], i.info, str(filename)
|
|
result_list.append(next)
|
|
return i_resized, positive, params['seed'], i.info, str(filename) if len(result_list) ==1 else result_list, response_time
|
|
except Exception as e:
|
|
error_message = str(e)
|
|
raise
|
|
except Exception as e:
|
|
end_time = time.time()
|
|
response_time = round(end_time - start_time, 2)
|
|
if not error_message:
|
|
if zipped_bytes is not None:
|
|
try:
|
|
error_message = zipped_bytes.decode('utf-8')[2:-2]
|
|
except:
|
|
error_message = str(e)
|
|
else:
|
|
error_message = str(e)
|
|
log_error(error_message, "path_to_output_folder")
|
|
return None, error_message, params['seed'], None, None, response_time |