![baptistecolle's picture](https://cdn-avatars.huggingface.co/v1/production/uploads/63248499a831987cc737ea65/JGcrkDSauHo7I1VIngOsd.jpeg)
baptistecolle
HF staff
mistral-voyager-finetune-Open-Orca/Mistral-7B-OpenOrca-2023-11-22-11-58
39ec8ba
#!/usr/bin/env python | |
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets | |
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in | |
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any | |
# application. | |
# | |
# example: python zero_to_fp32.py . pytorch_model.bin | |
import argparse | |
import torch | |
import glob | |
import math | |
import os | |
import re | |
from collections import OrderedDict | |
from dataclasses import dataclass | |
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with | |
# DeepSpeed data structures it has to be available in the current python environment. | |
from deepspeed.utils import logger | |
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, | |
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, | |
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) | |
class zero_model_state: | |
buffers: dict() | |
param_shapes: dict() | |
shared_params: list | |
ds_version: int | |
frozen_param_shapes: dict() | |
frozen_param_fragments: dict() | |
debug = 0 | |
# load to cpu | |
device = torch.device('cpu') | |
def atoi(text): | |
return int(text) if text.isdigit() else text | |
def natural_keys(text): | |
''' | |
alist.sort(key=natural_keys) sorts in human order | |
http://nedbatchelder.com/blog/200712/human_sorting.html | |
(See Toothy's implementation in the comments) | |
''' | |
return [atoi(c) for c in re.split(r'(\d+)', text)] | |
def get_model_state_file(checkpoint_dir, zero_stage): | |
if not os.path.isdir(checkpoint_dir): | |
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") | |
# there should be only one file | |
if zero_stage <= 2: | |
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") | |
elif zero_stage == 3: | |
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") | |
if not os.path.exists(file): | |
raise FileNotFoundError(f"can't find model states file at '{file}'") | |
return file | |
def get_checkpoint_files(checkpoint_dir, glob_pattern): | |
# XXX: need to test that this simple glob rule works for multi-node setup too | |
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) | |
if len(ckpt_files) == 0: | |
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") | |
return ckpt_files | |
def get_optim_files(checkpoint_dir): | |
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") | |
def get_model_state_files(checkpoint_dir): | |
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") | |
def parse_model_states(files): | |
zero_model_states = [] | |
for file in files: | |
state_dict = torch.load(file, map_location=device) | |
if BUFFER_NAMES not in state_dict: | |
raise ValueError(f"{file} is not a model state checkpoint") | |
buffer_names = state_dict[BUFFER_NAMES] | |
if debug: | |
print("Found buffers:", buffer_names) | |
# recover just the buffers while restoring them to fp32 if they were saved in fp16 | |
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} | |
param_shapes = state_dict[PARAM_SHAPES] | |
# collect parameters that are included in param_shapes | |
param_names = [] | |
for s in param_shapes: | |
for name in s.keys(): | |
param_names.append(name) | |
# update with frozen parameters | |
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) | |
if frozen_param_shapes is not None: | |
if debug: | |
print(f"Found frozen_param_shapes: {frozen_param_shapes}") | |
param_names += list(frozen_param_shapes.keys()) | |
# handle shared params | |
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] | |
ds_version = state_dict.get(DS_VERSION, None) | |
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) | |
z_model_state = zero_model_state(buffers=buffers, | |
param_shapes=param_shapes, | |
shared_params=shared_params, | |
ds_version=ds_version, | |
frozen_param_shapes=frozen_param_shapes, | |
frozen_param_fragments=frozen_param_fragments) | |
zero_model_states.append(z_model_state) | |
return zero_model_states | |
def parse_optim_states(files, ds_checkpoint_dir): | |
total_files = len(files) | |
state_dicts = [] | |
for f in files: | |
state_dict = torch.load(f, map_location=device) | |
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights | |
# and also handle the case where it was already removed by another helper script | |
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) | |
state_dicts.append(state_dict) | |
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: | |
raise ValueError(f"{files[0]} is not a zero checkpoint") | |
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] | |
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] | |
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert | |
# parameters can be different from data parallelism for non-expert parameters. So we can just | |
# use the max of the partition_count to get the dp world_size. | |
if type(world_size) is list: | |
world_size = max(world_size) | |
if world_size != total_files: | |
raise ValueError( | |
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " | |
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." | |
) | |
# the groups are named differently in each stage | |
if zero_stage <= 2: | |
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS | |
elif zero_stage == 3: | |
fp32_groups_key = FP32_FLAT_GROUPS | |
else: | |
raise ValueError(f"unknown zero stage {zero_stage}") | |
if zero_stage <= 2: | |
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] | |
elif zero_stage == 3: | |
# if there is more than one param group, there will be multiple flattened tensors - one | |
# flattened tensor per group - for simplicity merge them into a single tensor | |
# | |
# XXX: could make the script more memory efficient for when there are multiple groups - it | |
# will require matching the sub-lists of param_shapes for each param group flattened tensor | |
fp32_flat_groups = [ | |
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) | |
] | |
return zero_stage, world_size, fp32_flat_groups | |
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): | |
""" | |
Returns fp32 state_dict reconstructed from ds checkpoint | |
Args: | |
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) | |
""" | |
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") | |
optim_files = get_optim_files(ds_checkpoint_dir) | |
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) | |
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") | |
model_files = get_model_state_files(ds_checkpoint_dir) | |
zero_model_states = parse_model_states(model_files) | |
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') | |
if zero_stage <= 2: | |
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) | |
elif zero_stage == 3: | |
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) | |
def _zero2_merge_frozen_params(state_dict, zero_model_states): | |
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: | |
return | |
frozen_param_shapes = zero_model_states[0].frozen_param_shapes | |
frozen_param_fragments = zero_model_states[0].frozen_param_fragments | |
if debug: | |
num_elem = sum(s.numel() for s in frozen_param_shapes.values()) | |
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') | |
wanted_params = len(frozen_param_shapes) | |
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) | |
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) | |
print(f'Frozen params: Have {avail_numel} numels to process.') | |
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') | |
total_params = 0 | |
total_numel = 0 | |
for name, shape in frozen_param_shapes.items(): | |
total_params += 1 | |
unpartitioned_numel = shape.numel() | |
total_numel += unpartitioned_numel | |
state_dict[name] = frozen_param_fragments[name] | |
if debug: | |
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") | |
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") | |
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): | |
param_shapes = zero_model_states[0].param_shapes | |
# Reconstruction protocol: | |
# | |
# XXX: document this | |
if debug: | |
for i in range(world_size): | |
for j in range(len(fp32_flat_groups[0])): | |
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") | |
# XXX: memory usage doubles here (zero2) | |
num_param_groups = len(fp32_flat_groups[0]) | |
merged_single_partition_of_fp32_groups = [] | |
for i in range(num_param_groups): | |
merged_partitions = [sd[i] for sd in fp32_flat_groups] | |
full_single_fp32_vector = torch.cat(merged_partitions, 0) | |
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) | |
avail_numel = sum( | |
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) | |
if debug: | |
wanted_params = sum([len(shapes) for shapes in param_shapes]) | |
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) | |
# not asserting if there is a mismatch due to possible padding | |
print(f"Have {avail_numel} numels to process.") | |
print(f"Need {wanted_numel} numels in {wanted_params} params.") | |
# params | |
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support | |
# out-of-core computing solution | |
total_numel = 0 | |
total_params = 0 | |
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): | |
offset = 0 | |
avail_numel = full_single_fp32_vector.numel() | |
for name, shape in shapes.items(): | |
unpartitioned_numel = shape.numel() | |
total_numel += unpartitioned_numel | |
total_params += 1 | |
if debug: | |
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") | |
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) | |
offset += unpartitioned_numel | |
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and | |
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex | |
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the | |
# live optimizer object, so we are checking that the numbers are within the right range | |
align_to = 2 * world_size | |
def zero2_align(x): | |
return align_to * math.ceil(x / align_to) | |
if debug: | |
print(f"original offset={offset}, avail_numel={avail_numel}") | |
offset = zero2_align(offset) | |
avail_numel = zero2_align(avail_numel) | |
if debug: | |
print(f"aligned offset={offset}, avail_numel={avail_numel}") | |
# Sanity check | |
if offset != avail_numel: | |
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") | |
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") | |
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): | |
state_dict = OrderedDict() | |
# buffers | |
buffers = zero_model_states[0].buffers | |
state_dict.update(buffers) | |
if debug: | |
print(f"added {len(buffers)} buffers") | |
_zero2_merge_frozen_params(state_dict, zero_model_states) | |
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) | |
# recover shared parameters | |
for pair in zero_model_states[0].shared_params: | |
if pair[1] in state_dict: | |
state_dict[pair[0]] = state_dict[pair[1]] | |
return state_dict | |
def zero3_partitioned_param_info(unpartitioned_numel, world_size): | |
remainder = unpartitioned_numel % world_size | |
padding_numel = (world_size - remainder) if remainder else 0 | |
partitioned_numel = math.ceil(unpartitioned_numel / world_size) | |
return partitioned_numel, padding_numel | |
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): | |
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: | |
return | |
if debug: | |
for i in range(world_size): | |
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) | |
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') | |
frozen_param_shapes = zero_model_states[0].frozen_param_shapes | |
wanted_params = len(frozen_param_shapes) | |
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) | |
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size | |
print(f'Frozen params: Have {avail_numel} numels to process.') | |
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') | |
total_params = 0 | |
total_numel = 0 | |
for name, shape in zero_model_states[0].frozen_param_shapes.items(): | |
total_params += 1 | |
unpartitioned_numel = shape.numel() | |
total_numel += unpartitioned_numel | |
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) | |
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) | |
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | |
if debug: | |
print( | |
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | |
) | |
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") | |
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): | |
param_shapes = zero_model_states[0].param_shapes | |
avail_numel = fp32_flat_groups[0].numel() * world_size | |
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each | |
# param, re-consolidating each param, while dealing with padding if any | |
# merge list of dicts, preserving order | |
param_shapes = {k: v for d in param_shapes for k, v in d.items()} | |
if debug: | |
for i in range(world_size): | |
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") | |
wanted_params = len(param_shapes) | |
wanted_numel = sum(shape.numel() for shape in param_shapes.values()) | |
# not asserting if there is a mismatch due to possible padding | |
avail_numel = fp32_flat_groups[0].numel() * world_size | |
print(f"Trainable params: Have {avail_numel} numels to process.") | |
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") | |
# params | |
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support | |
# out-of-core computing solution | |
offset = 0 | |
total_numel = 0 | |
total_params = 0 | |
for name, shape in param_shapes.items(): | |
unpartitioned_numel = shape.numel() | |
total_numel += unpartitioned_numel | |
total_params += 1 | |
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | |
if debug: | |
print( | |
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | |
) | |
# XXX: memory usage doubles here | |
state_dict[name] = torch.cat( | |
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), | |
0).narrow(0, 0, unpartitioned_numel).view(shape) | |
offset += partitioned_numel | |
offset *= world_size | |
# Sanity check | |
if offset != avail_numel: | |
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") | |
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") | |
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): | |
state_dict = OrderedDict() | |
# buffers | |
buffers = zero_model_states[0].buffers | |
state_dict.update(buffers) | |
if debug: | |
print(f"added {len(buffers)} buffers") | |
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states) | |
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) | |
# recover shared parameters | |
for pair in zero_model_states[0].shared_params: | |
if pair[1] in state_dict: | |
state_dict[pair[0]] = state_dict[pair[1]] | |
return state_dict | |
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): | |
""" | |
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with | |
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example | |
via a model hub. | |
Args: | |
- ``checkpoint_dir``: path to the desired checkpoint folder | |
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` | |
Returns: | |
- pytorch ``state_dict`` | |
Note: this approach may not work if your application doesn't have sufficient free CPU memory and | |
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with | |
the checkpoint. | |
A typical usage might be :: | |
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint | |
# do the training and checkpoint saving | |
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu | |
model = model.cpu() # move to cpu | |
model.load_state_dict(state_dict) | |
# submit to model hub or save the model to share with others | |
In this example the ``model`` will no longer be usable in the deepspeed context of the same | |
application. i.e. you will need to re-initialize the deepspeed engine, since | |
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | |
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. | |
""" | |
if tag is None: | |
latest_path = os.path.join(checkpoint_dir, 'latest') | |
if os.path.isfile(latest_path): | |
with open(latest_path, 'r') as fd: | |
tag = fd.read().strip() | |
else: | |
raise ValueError(f"Unable to find 'latest' file at {latest_path}") | |
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) | |
if not os.path.isdir(ds_checkpoint_dir): | |
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") | |
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) | |
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): | |
""" | |
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be | |
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. | |
Args: | |
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | |
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) | |
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | |
""" | |
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) | |
print(f"Saving fp32 state dict to {output_file}") | |
torch.save(state_dict, output_file) | |
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): | |
""" | |
1. Put the provided model to cpu | |
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` | |
3. Load it into the provided model | |
Args: | |
- ``model``: the model object to update | |
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | |
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | |
Returns: | |
- ``model`: modified model | |
Make sure you have plenty of CPU memory available before you call this function. If you don't | |
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it | |
conveniently placed for you in the checkpoint folder. | |
A typical usage might be :: | |
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint | |
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) | |
# submit to model hub or save the model to share with others | |
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context | |
of the same application. i.e. you will need to re-initialize the deepspeed engine, since | |
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | |
""" | |
logger.info(f"Extracting fp32 weights") | |
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) | |
logger.info(f"Overwriting model with fp32 weights") | |
model = model.cpu() | |
model.load_state_dict(state_dict, strict=False) | |
return model | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("checkpoint_dir", | |
type=str, | |
help="path to the desired checkpoint folder, e.g., path/checkpoint-12") | |
parser.add_argument( | |
"output_file", | |
type=str, | |
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") | |
parser.add_argument("-t", | |
"--tag", | |
type=str, | |
default=None, | |
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") | |
parser.add_argument("-d", "--debug", action='store_true', help="enable debug") | |
args = parser.parse_args() | |
debug = args.debug | |
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) | |