--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: xlsr-polish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: pl split: validation args: pl metrics: - name: Wer type: wer value: 0.1443174034459139 --- [Visualize in Weights & Biases](https://wandb.ai/badr-nlp/xlsr-continual-finetuning-polish/runs/v7cepqow) # xlsr-polish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1686 - Wer: 0.1443 - Cer: 0.0313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 4.7158 | 0.1543 | 100 | 4.0453 | 1.0 | 1.0 | | 3.3469 | 0.3086 | 200 | 3.2544 | 1.0 | 1.0 | | 2.9194 | 0.4630 | 300 | 2.7288 | 0.9985 | 0.8650 | | 0.921 | 0.6173 | 400 | 0.5673 | 0.5449 | 0.1303 | | 0.8196 | 0.7716 | 500 | 0.4311 | 0.4439 | 0.1025 | | 0.7248 | 0.9259 | 600 | 0.3672 | 0.3894 | 0.0875 | | 0.1727 | 1.0802 | 700 | 0.3141 | 0.3363 | 0.0739 | | 0.1807 | 1.2346 | 800 | 0.3075 | 0.3463 | 0.0758 | | 0.1683 | 1.3889 | 900 | 0.2969 | 0.3217 | 0.0707 | | 0.1616 | 1.5432 | 1000 | 0.2650 | 0.3045 | 0.0675 | | 0.1569 | 1.6975 | 1100 | 0.2718 | 0.2912 | 0.0658 | | 0.1185 | 1.8519 | 1200 | 0.2647 | 0.3139 | 0.0672 | | 0.1101 | 2.0062 | 1300 | 0.2476 | 0.2659 | 0.0576 | | 0.1296 | 2.1605 | 1400 | 0.2493 | 0.2704 | 0.0590 | | 0.0829 | 2.3148 | 1500 | 0.2299 | 0.2614 | 0.0576 | | 0.0881 | 2.4691 | 1600 | 0.2434 | 0.2670 | 0.0601 | | 0.125 | 2.6235 | 1700 | 0.2318 | 0.2745 | 0.0570 | | 0.1227 | 2.7778 | 1800 | 0.2245 | 0.2527 | 0.0542 | | 0.1128 | 2.9321 | 1900 | 0.2293 | 0.2600 | 0.0562 | | 0.079 | 3.0864 | 2000 | 0.2227 | 0.2511 | 0.0530 | | 0.0906 | 3.2407 | 2100 | 0.2289 | 0.2331 | 0.0515 | | 0.09 | 3.3951 | 2200 | 0.2196 | 0.2486 | 0.0528 | | 0.1113 | 3.5494 | 2300 | 0.2230 | 0.2392 | 0.0539 | | 0.0867 | 3.7037 | 2400 | 0.2155 | 0.2237 | 0.0492 | | 0.097 | 3.8580 | 2500 | 0.2120 | 0.2261 | 0.0493 | | 0.0659 | 4.0123 | 2600 | 0.2073 | 0.2216 | 0.0493 | | 0.0796 | 4.1667 | 2700 | 0.2135 | 0.2181 | 0.0468 | | 0.0601 | 4.3210 | 2800 | 0.2034 | 0.2190 | 0.0480 | | 0.0644 | 4.4753 | 2900 | 0.2115 | 0.2092 | 0.0456 | | 0.0772 | 4.6296 | 3000 | 0.1986 | 0.2127 | 0.0461 | | 0.066 | 4.7840 | 3100 | 0.1985 | 0.2027 | 0.0447 | | 0.0633 | 4.9383 | 3200 | 0.2094 | 0.2115 | 0.0456 | | 0.0579 | 5.0926 | 3300 | 0.2058 | 0.2169 | 0.0460 | | 0.0709 | 5.2469 | 3400 | 0.1976 | 0.1973 | 0.0428 | | 0.0405 | 5.4012 | 3500 | 0.2001 | 0.1965 | 0.0424 | | 0.0515 | 5.5556 | 3600 | 0.2035 | 0.2014 | 0.0438 | | 0.0785 | 5.7099 | 3700 | 0.1864 | 0.1928 | 0.0412 | | 0.0514 | 5.8642 | 3800 | 0.1850 | 0.1858 | 0.0397 | | 0.0355 | 6.0185 | 3900 | 0.1903 | 0.1837 | 0.0399 | | 0.0621 | 6.1728 | 4000 | 0.1881 | 0.1798 | 0.0392 | | 0.0525 | 6.3272 | 4100 | 0.1852 | 0.1881 | 0.0403 | | 0.0497 | 6.4815 | 4200 | 0.1855 | 0.1770 | 0.0387 | | 0.0362 | 6.6358 | 4300 | 0.1945 | 0.1899 | 0.0400 | | 0.0399 | 6.7901 | 4400 | 0.1803 | 0.1742 | 0.0378 | | 0.0483 | 6.9444 | 4500 | 0.1777 | 0.1723 | 0.0372 | | 0.0293 | 7.0988 | 4600 | 0.1903 | 0.1697 | 0.0369 | | 0.0635 | 7.2531 | 4700 | 0.1787 | 0.1726 | 0.0365 | | 0.0199 | 7.4074 | 4800 | 0.1722 | 0.1682 | 0.0362 | | 0.0393 | 7.5617 | 4900 | 0.1918 | 0.1641 | 0.0357 | | 0.0357 | 7.7160 | 5000 | 0.1801 | 0.1649 | 0.0358 | | 0.0444 | 7.8704 | 5100 | 0.1775 | 0.1626 | 0.0353 | | 0.0266 | 8.0247 | 5200 | 0.1693 | 0.1592 | 0.0341 | | 0.0381 | 8.1790 | 5300 | 0.1794 | 0.1571 | 0.0341 | | 0.0308 | 8.3333 | 5400 | 0.1685 | 0.1551 | 0.0333 | | 0.0304 | 8.4877 | 5500 | 0.1752 | 0.1519 | 0.0330 | | 0.0316 | 8.6420 | 5600 | 0.1752 | 0.1507 | 0.0326 | | 0.0377 | 8.7963 | 5700 | 0.1671 | 0.1523 | 0.0328 | | 0.0588 | 8.9506 | 5800 | 0.1725 | 0.1550 | 0.0335 | | 0.0487 | 9.1049 | 5900 | 0.1774 | 0.1531 | 0.0332 | | 0.0169 | 9.2593 | 6000 | 0.1709 | 0.1470 | 0.0318 | | 0.0274 | 9.4136 | 6100 | 0.1778 | 0.1468 | 0.0318 | | 0.023 | 9.5679 | 6200 | 0.1718 | 0.1482 | 0.0322 | | 0.0274 | 9.7222 | 6300 | 0.1700 | 0.1451 | 0.0315 | | 0.0349 | 9.8765 | 6400 | 0.1686 | 0.1443 | 0.0313 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1