babujyan commited on
Commit
f0bc3ed
·
1 Parent(s): 76ad581

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.09 +/- 23.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e1df89dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e1df89e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e1df89ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e1df89f70>", "_build": "<function ActorCriticPolicy._build at 0x7f6e1df8f040>", "forward": "<function ActorCriticPolicy.forward at 0x7f6e1df8f0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e1df8f160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6e1df8f1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e1df8f280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e1df8f310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e1df8f3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6e1df8c2d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671572398249666944, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1HkD32RG26XRfnOn5bMTbbS4k73sIFugAAgD8AAIA/syrFPa4lhbo230g790laN2X6VjthdTa6AACAPwAAgD/mngS+x/FaP0hZ1rz14Y6+ajISvnBrvT0AAAAAAAAAALPfNT2PAg66bSYuulGW17SEvxE74MZNOQAAgD8AAIA/misePY9eb7oOIlk737cNN8QBWzsi6+o1AACAPwAAgD+agFi9e5KJumbOajsj4bQ3m/rFN+G+M7oAAIA/AACAP2YnML7w6/g+kLVfPuSmcb5y/wA9w4G+vQAAAAAAAAAAzZd1Pa61jrqVPO06Fau/Nfwe3Lq+rQm6AACAPwAAgD/mPG89wzlNupvxfjtVbfa0TAxrOS/klboAAIA/AAAAAJprpjzssYc4qAGmOaErjLZRqFO7kK3IuAAAgD8AAIA/ZsIIvexpgLlZDaA6VRV6NeUMobp4TL+5AACAPwAAgD9mRkU9SF+juujlMzvRspo1b25hOgyDTLoAAIA/AACAPyZV6D0lg5g+tvThPNk2iL6WXsQ8uNrlOwAAAAAAAAAAZgu5PZu0hD10+ye+AkNNvjvijTyov888AAAAAAAAAACaFOQ8j45Ouh6JjbvJABO2iOXGul6OpToAAIA/AACAPwD0CD3Xsxm5Ck7hu0O2qzUbatA5ttohtQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY3/ZPXmnY0CUhpRSlIwBbJRN6AOMAXSUR0CRNmSwW3z+dX2UKGgGaAloD0MIFhQGZRosYECUhpRSlGgVTegDaBZHQJE3AgNgBtF1fZQoaAZoCWgPQwjc2sLzUnBmQJSGlFKUaBVN6ANoFkdAkVCEZWJaaHV9lChoBmgJaA9DCCL+YUsPaGZAlIaUUpRoFU3oA2gWR0CRVtuPV/c4dX2UKGgGaAloD0MIk3NiD20SaECUhpRSlGgVTegDaBZHQJFbiSZBsyl1fZQoaAZoCWgPQwimDvJ6MHZiQJSGlFKUaBVN6ANoFkdAkV4w6ltTDXV9lChoBmgJaA9DCLzMsFHWQ2RAlIaUUpRoFU3oA2gWR0CRX/J/XoTxdX2UKGgGaAloD0MIZr0YygnQYECUhpRSlGgVTegDaBZHQJFhvGn4wh51fZQoaAZoCWgPQwi46c9+pI9jQJSGlFKUaBVN6ANoFkdAkWHiowVTJnV9lChoBmgJaA9DCNgN2xZlnGFAlIaUUpRoFU3oA2gWR0CRY1If8uSPdX2UKGgGaAloD0MIxsGlY06lYECUhpRSlGgVTegDaBZHQJFsiFdszl91fZQoaAZoCWgPQwigUbr0L9k/QJSGlFKUaBVLzGgWR0CRbTDVYp2EdX2UKGgGaAloD0MIDVLwFHLMZkCUhpRSlGgVTegDaBZHQJFtm4axX4l1fZQoaAZoCWgPQwjbTIV4JGhkQJSGlFKUaBVN6ANoFkdAkXSB7VrhznV9lChoBmgJaA9DCA/QfTmz5WNAlIaUUpRoFU3oA2gWR0CRf1/5ckdFdX2UKGgGaAloD0MIGoo73mS+Z0CUhpRSlGgVTegDaBZHQJGBfbM5fdB1fZQoaAZoCWgPQwgRp5NsdShbQJSGlFKUaBVN6ANoFkdAkYSvZ/Tb4HV9lChoBmgJaA9DCNTVHYvtRWRAlIaUUpRoFU3oA2gWR0CRhhOe8PFvdX2UKGgGaAloD0MIj6flB64GZUCUhpRSlGgVTegDaBZHQJGGs24uscR1fZQoaAZoCWgPQwgLXvQVJBhgQJSGlFKUaBVN6ANoFkdAkaBth/iHZnV9lChoBmgJaA9DCNkKmpbY4WRAlIaUUpRoFU3oA2gWR0CRp0LhaTwEdX2UKGgGaAloD0MImNwoslb6Y0CUhpRSlGgVTegDaBZHQJGsHisGPgh1fZQoaAZoCWgPQwgejNgngDBmQJSGlFKUaBVN6ANoFkdAka7Dbah6B3V9lChoBmgJaA9DCPcdw2O/hWNAlIaUUpRoFU3oA2gWR0CRsHxoZhrndX2UKGgGaAloD0MIJXhDGhWAXkCUhpRSlGgVTegDaBZHQJGyJzzVc2R1fZQoaAZoCWgPQwglOzYC8ZVgQJSGlFKUaBVN6ANoFkdAkbO1aOgg5nV9lChoBmgJaA9DCMvydRl+lWFAlIaUUpRoFU3oA2gWR0CRvX0cwQDndX2UKGgGaAloD0MIjc9k/7ydZ0CUhpRSlGgVTegDaBZHQJG+K8OCoTB1fZQoaAZoCWgPQwh3gZICiwRmQJSGlFKUaBVN6ANoFkdAkb6bA+IM0HV9lChoBmgJaA9DCBtmaDyRIGVAlIaUUpRoFU3oA2gWR0CRxdmP5pJxdX2UKGgGaAloD0MIPPazWAqKYkCUhpRSlGgVTegDaBZHQJHRltFa0Qd1fZQoaAZoCWgPQwiXi/hOzHNdQJSGlFKUaBVN6ANoFkdAkdPwgcLjP3V9lChoBmgJaA9DCPc+VYUGM2dAlIaUUpRoFU3oA2gWR0CR14GMn7YTdX2UKGgGaAloD0MIIF7XL1goZUCUhpRSlGgVTegDaBZHQJHZBTCLuQZ1fZQoaAZoCWgPQwgVGR2QhCRlQJSGlFKUaBVN6ANoFkdAkdm1pTMq0HV9lChoBmgJaA9DCAaeew+XQWBAlIaUUpRoFU3oA2gWR0CR8/2Dxsl+dX2UKGgGaAloD0MI9n8O8+ViY0CUhpRSlGgVTegDaBZHQJH6nUPQOWl1fZQoaAZoCWgPQwg6d7temk5nQJSGlFKUaBVN6ANoFkdAkf89l2/zrnV9lChoBmgJaA9DCFK5iVqaxWNAlIaUUpRoFU3oA2gWR0CSAeK4hEBsdX2UKGgGaAloD0MIveR/8nfAZECUhpRSlGgVTegDaBZHQJIDjXBguyx1fZQoaAZoCWgPQwgK20/GeLViQJSGlFKUaBVN6ANoFkdAkgU384xUN3V9lChoBmgJaA9DCM4Xey8+XGVAlIaUUpRoFU3oA2gWR0CSBtOWSlnAdX2UKGgGaAloD0MIHjNQGX9XY0CUhpRSlGgVTegDaBZHQJIQE0O3DvV1fZQoaAZoCWgPQwjSjEXTWVppQJSGlFKUaBVN6ANoFkdAkhC216Vt43V9lChoBmgJaA9DCGZrfZFQL2RAlIaUUpRoFU3oA2gWR0CSERt3wCr+dX2UKGgGaAloD0MIFk1nJ4PKZkCUhpRSlGgVTegDaBZHQJIX2TeO4oZ1fZQoaAZoCWgPQwgmxjL9EnthQJSGlFKUaBVN6ANoFkdAkiKDjNpudnV9lChoBmgJaA9DCL1RK0zfPGRAlIaUUpRoFU3oA2gWR0CSJKDst03gdX2UKGgGaAloD0MIWTUIcztiYECUhpRSlGgVTegDaBZHQJIn3CYTkAB1fZQoaAZoCWgPQwh+/nvw2plnQJSGlFKUaBVN6ANoFkdAkik4Dklu33V9lChoBmgJaA9DCEoLl1XYjWNAlIaUUpRoFU3oA2gWR0CSKdELpiZwdX2UKGgGaAloD0MIfnGpSts0ZECUhpRSlGgVTegDaBZHQJIt3mq5sj51fZQoaAZoCWgPQwhg5GVNrGhnQJSGlFKUaBVN6ANoFkdAkkjDKgZjx3V9lChoBmgJaA9DCBmuDoA43mNAlIaUUpRoFU3oA2gWR0CSTOSflIVedX2UKGgGaAloD0MIu2HbosxNYECUhpRSlGgVTegDaBZHQJJPVJK8L8d1fZQoaAZoCWgPQwh9WdqpOcljQJSGlFKUaBVN6ANoFkdAklDfppvgnHV9lChoBmgJaA9DCMsQx7q4B2JAlIaUUpRoFU3oA2gWR0CSUnB+WnjydX2UKGgGaAloD0MIViqoqHrEZkCUhpRSlGgVTegDaBZHQJJT/y9VWCF1fZQoaAZoCWgPQwgIsMivn8xlQJSGlFKUaBVN6ANoFkdAkl10mtyPuHV9lChoBmgJaA9DCJhokIInNmRAlIaUUpRoFU3oA2gWR0CSXiTTvy9VdX2UKGgGaAloD0MIXg6775iVZECUhpRSlGgVTegDaBZHQJJehLamGdt1fZQoaAZoCWgPQwilLEMc6yluQJSGlFKUaBVNjgNoFkdAkmAkO3DvVnV9lChoBmgJaA9DCEOpvYi2QWVAlIaUUpRoFU3oA2gWR0CScUNnXd0rdX2UKGgGaAloD0MIsVJBRdUNZ0CUhpRSlGgVTegDaBZHQJJzqAMDwH91fZQoaAZoCWgPQwhmFTYDXGRnQJSGlFKUaBVN6ANoFkdAkndMm4RVZXV9lChoBmgJaA9DCB9q2zAKF2RAlIaUUpRoFU3oA2gWR0CSePCTEBKddX2UKGgGaAloD0MIdelfkkrrYkCUhpRSlGgVTegDaBZHQJJ5qWIGhVV1fZQoaAZoCWgPQwiGcTeIVg5hQJSGlFKUaBVN6ANoFkdAkn6jHbRF7XV9lChoBmgJaA9DCCY0SSwpKmNAlIaUUpRoFU3oA2gWR0CSmvkkrwvydX2UKGgGaAloD0MIrOP4odLyYUCUhpRSlGgVTegDaBZHQJKfzj94u9R1fZQoaAZoCWgPQwjX+412XCViQJSGlFKUaBVN6ANoFkdAkqKa2rn1WnV9lChoBmgJaA9DCBn+0w2U8GRAlIaUUpRoFU3oA2gWR0CSpEqzqrzYdX2UKGgGaAloD0MII2k3+pivX0CUhpRSlGgVTegDaBZHQJKmApz90ih1fZQoaAZoCWgPQwjeOCnM+8BlQJSGlFKUaBVN6ANoFkdAkqenn2ZiNXV9lChoBmgJaA9DCOCdfHpsv19AlIaUUpRoFU3oA2gWR0CSsdIu5BkadX2UKGgGaAloD0MItHdGW5UfZECUhpRSlGgVTegDaBZHQJKyfoV2zOZ1fZQoaAZoCWgPQwiga19AL3lkQJSGlFKUaBVN6ANoFkdAkrLmoR7JGXV9lChoBmgJaA9DCGE1lrC2xmdAlIaUUpRoFU3oA2gWR0CStIhgVoHtdX2UKGgGaAloD0MIacai6eyUZECUhpRSlGgVTegDaBZHQJLFWICU5dZ1fZQoaAZoCWgPQwjtR4rIMNhiQJSGlFKUaBVN6ANoFkdAkse3jp9qlHV9lChoBmgJaA9DCJwZ/Wi4nWBAlIaUUpRoFU3oA2gWR0CSyyfOlfqpdX2UKGgGaAloD0MIuMg9Xd10YkCUhpRSlGgVTegDaBZHQJLMvLOiWVx1fZQoaAZoCWgPQwh40VeQZntlQJSGlFKUaBVN6ANoFkdAks13PJJXhnV9lChoBmgJaA9DCJuPa0NF2WVAlIaUUpRoFU3oA2gWR0CS0iiONo8IdX2UKGgGaAloD0MIFva0w1+RYUCUhpRSlGgVTegDaBZHQJLuG2TgVGl1fZQoaAZoCWgPQwhn7iHh+9ljQJSGlFKUaBVN6ANoFkdAkvLQ6dUbUHV9lChoBmgJaA9DCJMCC2DKw2NAlIaUUpRoFU3oA2gWR0CS9Yhq0tyxdX2UKGgGaAloD0MIJPHydK4hZ0CUhpRSlGgVTegDaBZHQJL3T/m1YyR1fZQoaAZoCWgPQwgNN+Dzw6NgQJSGlFKUaBVN6ANoFkdAkvkXBciW3XV9lChoBmgJaA9DCHR8tDjjEGZAlIaUUpRoFU3oA2gWR0CS+sVp9JBgdX2UKGgGaAloD0MIr+lBQSm5YkCUhpRSlGgVTegDaBZHQJMFMrVe8f51fZQoaAZoCWgPQwiu2cpLfjllQJSGlFKUaBVN6ANoFkdAkwXmCuloDnV9lChoBmgJaA9DCLNEZ5lFlV9AlIaUUpRoFU3oA2gWR0CTBlT6i0v5dX2UKGgGaAloD0MIguMybmrGZECUhpRSlGgVTegDaBZHQJMIHWJ79ht1fZQoaAZoCWgPQwhckC3LVwZoQJSGlFKUaBVN6ANoFkdAkxkqij+Jg3V9lChoBmgJaA9DCBHHuriNoGNAlIaUUpRoFU3oA2gWR0CTG4pbD/EPdX2UKGgGaAloD0MI8x/Sb19rZkCUhpRSlGgVTegDaBZHQJMfAZFXq7l1fZQoaAZoCWgPQwjCL/XzpphmQJSGlFKUaBVN6ANoFkdAkyCLlmvnsHV9lChoBmgJaA9DCFQ3F3/bvl9AlIaUUpRoFU3oA2gWR0CTISXTmW+odX2UKGgGaAloD0MITfilft6LXECUhpRSlGgVTegDaBZHQJMl91JUYKp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8b888968ac24b85161251ed0e6e737f9fdcd0d4d1412d68a9d4034827499be9
3
+ size 147218
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6e1df89dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6e1df89e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6e1df89ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6e1df89f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6e1df8f040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6e1df8f0d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6e1df8f160>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6e1df8f1f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6e1df8f280>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6e1df8f310>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6e1df8f3a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6e1df8c2d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671572398249666944,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1HkD32RG26XRfnOn5bMTbbS4k73sIFugAAgD8AAIA/syrFPa4lhbo230g790laN2X6VjthdTa6AACAPwAAgD/mngS+x/FaP0hZ1rz14Y6+ajISvnBrvT0AAAAAAAAAALPfNT2PAg66bSYuulGW17SEvxE74MZNOQAAgD8AAIA/misePY9eb7oOIlk737cNN8QBWzsi6+o1AACAPwAAgD+agFi9e5KJumbOajsj4bQ3m/rFN+G+M7oAAIA/AACAP2YnML7w6/g+kLVfPuSmcb5y/wA9w4G+vQAAAAAAAAAAzZd1Pa61jrqVPO06Fau/Nfwe3Lq+rQm6AACAPwAAgD/mPG89wzlNupvxfjtVbfa0TAxrOS/klboAAIA/AAAAAJprpjzssYc4qAGmOaErjLZRqFO7kK3IuAAAgD8AAIA/ZsIIvexpgLlZDaA6VRV6NeUMobp4TL+5AACAPwAAgD9mRkU9SF+juujlMzvRspo1b25hOgyDTLoAAIA/AACAPyZV6D0lg5g+tvThPNk2iL6WXsQ8uNrlOwAAAAAAAAAAZgu5PZu0hD10+ye+AkNNvjvijTyov888AAAAAAAAAACaFOQ8j45Ouh6JjbvJABO2iOXGul6OpToAAIA/AACAPwD0CD3Xsxm5Ck7hu0O2qzUbatA5ttohtQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY3/ZPXmnY0CUhpRSlIwBbJRN6AOMAXSUR0CRNmSwW3z+dX2UKGgGaAloD0MIFhQGZRosYECUhpRSlGgVTegDaBZHQJE3AgNgBtF1fZQoaAZoCWgPQwjc2sLzUnBmQJSGlFKUaBVN6ANoFkdAkVCEZWJaaHV9lChoBmgJaA9DCCL+YUsPaGZAlIaUUpRoFU3oA2gWR0CRVtuPV/c4dX2UKGgGaAloD0MIk3NiD20SaECUhpRSlGgVTegDaBZHQJFbiSZBsyl1fZQoaAZoCWgPQwimDvJ6MHZiQJSGlFKUaBVN6ANoFkdAkV4w6ltTDXV9lChoBmgJaA9DCLzMsFHWQ2RAlIaUUpRoFU3oA2gWR0CRX/J/XoTxdX2UKGgGaAloD0MIZr0YygnQYECUhpRSlGgVTegDaBZHQJFhvGn4wh51fZQoaAZoCWgPQwi46c9+pI9jQJSGlFKUaBVN6ANoFkdAkWHiowVTJnV9lChoBmgJaA9DCNgN2xZlnGFAlIaUUpRoFU3oA2gWR0CRY1If8uSPdX2UKGgGaAloD0MIxsGlY06lYECUhpRSlGgVTegDaBZHQJFsiFdszl91fZQoaAZoCWgPQwigUbr0L9k/QJSGlFKUaBVLzGgWR0CRbTDVYp2EdX2UKGgGaAloD0MIDVLwFHLMZkCUhpRSlGgVTegDaBZHQJFtm4axX4l1fZQoaAZoCWgPQwjbTIV4JGhkQJSGlFKUaBVN6ANoFkdAkXSB7VrhznV9lChoBmgJaA9DCA/QfTmz5WNAlIaUUpRoFU3oA2gWR0CRf1/5ckdFdX2UKGgGaAloD0MIGoo73mS+Z0CUhpRSlGgVTegDaBZHQJGBfbM5fdB1fZQoaAZoCWgPQwgRp5NsdShbQJSGlFKUaBVN6ANoFkdAkYSvZ/Tb4HV9lChoBmgJaA9DCNTVHYvtRWRAlIaUUpRoFU3oA2gWR0CRhhOe8PFvdX2UKGgGaAloD0MIj6flB64GZUCUhpRSlGgVTegDaBZHQJGGs24uscR1fZQoaAZoCWgPQwgLXvQVJBhgQJSGlFKUaBVN6ANoFkdAkaBth/iHZnV9lChoBmgJaA9DCNkKmpbY4WRAlIaUUpRoFU3oA2gWR0CRp0LhaTwEdX2UKGgGaAloD0MImNwoslb6Y0CUhpRSlGgVTegDaBZHQJGsHisGPgh1fZQoaAZoCWgPQwgejNgngDBmQJSGlFKUaBVN6ANoFkdAka7Dbah6B3V9lChoBmgJaA9DCPcdw2O/hWNAlIaUUpRoFU3oA2gWR0CRsHxoZhrndX2UKGgGaAloD0MIJXhDGhWAXkCUhpRSlGgVTegDaBZHQJGyJzzVc2R1fZQoaAZoCWgPQwglOzYC8ZVgQJSGlFKUaBVN6ANoFkdAkbO1aOgg5nV9lChoBmgJaA9DCMvydRl+lWFAlIaUUpRoFU3oA2gWR0CRvX0cwQDndX2UKGgGaAloD0MIjc9k/7ydZ0CUhpRSlGgVTegDaBZHQJG+K8OCoTB1fZQoaAZoCWgPQwh3gZICiwRmQJSGlFKUaBVN6ANoFkdAkb6bA+IM0HV9lChoBmgJaA9DCBtmaDyRIGVAlIaUUpRoFU3oA2gWR0CRxdmP5pJxdX2UKGgGaAloD0MIPPazWAqKYkCUhpRSlGgVTegDaBZHQJHRltFa0Qd1fZQoaAZoCWgPQwiXi/hOzHNdQJSGlFKUaBVN6ANoFkdAkdPwgcLjP3V9lChoBmgJaA9DCPc+VYUGM2dAlIaUUpRoFU3oA2gWR0CR14GMn7YTdX2UKGgGaAloD0MIIF7XL1goZUCUhpRSlGgVTegDaBZHQJHZBTCLuQZ1fZQoaAZoCWgPQwgVGR2QhCRlQJSGlFKUaBVN6ANoFkdAkdm1pTMq0HV9lChoBmgJaA9DCAaeew+XQWBAlIaUUpRoFU3oA2gWR0CR8/2Dxsl+dX2UKGgGaAloD0MI9n8O8+ViY0CUhpRSlGgVTegDaBZHQJH6nUPQOWl1fZQoaAZoCWgPQwg6d7temk5nQJSGlFKUaBVN6ANoFkdAkf89l2/zrnV9lChoBmgJaA9DCFK5iVqaxWNAlIaUUpRoFU3oA2gWR0CSAeK4hEBsdX2UKGgGaAloD0MIveR/8nfAZECUhpRSlGgVTegDaBZHQJIDjXBguyx1fZQoaAZoCWgPQwgK20/GeLViQJSGlFKUaBVN6ANoFkdAkgU384xUN3V9lChoBmgJaA9DCM4Xey8+XGVAlIaUUpRoFU3oA2gWR0CSBtOWSlnAdX2UKGgGaAloD0MIHjNQGX9XY0CUhpRSlGgVTegDaBZHQJIQE0O3DvV1fZQoaAZoCWgPQwjSjEXTWVppQJSGlFKUaBVN6ANoFkdAkhC216Vt43V9lChoBmgJaA9DCGZrfZFQL2RAlIaUUpRoFU3oA2gWR0CSERt3wCr+dX2UKGgGaAloD0MIFk1nJ4PKZkCUhpRSlGgVTegDaBZHQJIX2TeO4oZ1fZQoaAZoCWgPQwgmxjL9EnthQJSGlFKUaBVN6ANoFkdAkiKDjNpudnV9lChoBmgJaA9DCL1RK0zfPGRAlIaUUpRoFU3oA2gWR0CSJKDst03gdX2UKGgGaAloD0MIWTUIcztiYECUhpRSlGgVTegDaBZHQJIn3CYTkAB1fZQoaAZoCWgPQwh+/nvw2plnQJSGlFKUaBVN6ANoFkdAkik4Dklu33V9lChoBmgJaA9DCEoLl1XYjWNAlIaUUpRoFU3oA2gWR0CSKdELpiZwdX2UKGgGaAloD0MIfnGpSts0ZECUhpRSlGgVTegDaBZHQJIt3mq5sj51fZQoaAZoCWgPQwhg5GVNrGhnQJSGlFKUaBVN6ANoFkdAkkjDKgZjx3V9lChoBmgJaA9DCBmuDoA43mNAlIaUUpRoFU3oA2gWR0CSTOSflIVedX2UKGgGaAloD0MIu2HbosxNYECUhpRSlGgVTegDaBZHQJJPVJK8L8d1fZQoaAZoCWgPQwh9WdqpOcljQJSGlFKUaBVN6ANoFkdAklDfppvgnHV9lChoBmgJaA9DCMsQx7q4B2JAlIaUUpRoFU3oA2gWR0CSUnB+WnjydX2UKGgGaAloD0MIViqoqHrEZkCUhpRSlGgVTegDaBZHQJJT/y9VWCF1fZQoaAZoCWgPQwgIsMivn8xlQJSGlFKUaBVN6ANoFkdAkl10mtyPuHV9lChoBmgJaA9DCJhokIInNmRAlIaUUpRoFU3oA2gWR0CSXiTTvy9VdX2UKGgGaAloD0MIXg6775iVZECUhpRSlGgVTegDaBZHQJJehLamGdt1fZQoaAZoCWgPQwilLEMc6yluQJSGlFKUaBVNjgNoFkdAkmAkO3DvVnV9lChoBmgJaA9DCEOpvYi2QWVAlIaUUpRoFU3oA2gWR0CScUNnXd0rdX2UKGgGaAloD0MIsVJBRdUNZ0CUhpRSlGgVTegDaBZHQJJzqAMDwH91fZQoaAZoCWgPQwhmFTYDXGRnQJSGlFKUaBVN6ANoFkdAkndMm4RVZXV9lChoBmgJaA9DCB9q2zAKF2RAlIaUUpRoFU3oA2gWR0CSePCTEBKddX2UKGgGaAloD0MIdelfkkrrYkCUhpRSlGgVTegDaBZHQJJ5qWIGhVV1fZQoaAZoCWgPQwiGcTeIVg5hQJSGlFKUaBVN6ANoFkdAkn6jHbRF7XV9lChoBmgJaA9DCCY0SSwpKmNAlIaUUpRoFU3oA2gWR0CSmvkkrwvydX2UKGgGaAloD0MIrOP4odLyYUCUhpRSlGgVTegDaBZHQJKfzj94u9R1fZQoaAZoCWgPQwjX+412XCViQJSGlFKUaBVN6ANoFkdAkqKa2rn1WnV9lChoBmgJaA9DCBn+0w2U8GRAlIaUUpRoFU3oA2gWR0CSpEqzqrzYdX2UKGgGaAloD0MII2k3+pivX0CUhpRSlGgVTegDaBZHQJKmApz90ih1fZQoaAZoCWgPQwjeOCnM+8BlQJSGlFKUaBVN6ANoFkdAkqenn2ZiNXV9lChoBmgJaA9DCOCdfHpsv19AlIaUUpRoFU3oA2gWR0CSsdIu5BkadX2UKGgGaAloD0MItHdGW5UfZECUhpRSlGgVTegDaBZHQJKyfoV2zOZ1fZQoaAZoCWgPQwiga19AL3lkQJSGlFKUaBVN6ANoFkdAkrLmoR7JGXV9lChoBmgJaA9DCGE1lrC2xmdAlIaUUpRoFU3oA2gWR0CStIhgVoHtdX2UKGgGaAloD0MIacai6eyUZECUhpRSlGgVTegDaBZHQJLFWICU5dZ1fZQoaAZoCWgPQwjtR4rIMNhiQJSGlFKUaBVN6ANoFkdAkse3jp9qlHV9lChoBmgJaA9DCJwZ/Wi4nWBAlIaUUpRoFU3oA2gWR0CSyyfOlfqpdX2UKGgGaAloD0MIuMg9Xd10YkCUhpRSlGgVTegDaBZHQJLMvLOiWVx1fZQoaAZoCWgPQwh40VeQZntlQJSGlFKUaBVN6ANoFkdAks13PJJXhnV9lChoBmgJaA9DCJuPa0NF2WVAlIaUUpRoFU3oA2gWR0CS0iiONo8IdX2UKGgGaAloD0MIFva0w1+RYUCUhpRSlGgVTegDaBZHQJLuG2TgVGl1fZQoaAZoCWgPQwhn7iHh+9ljQJSGlFKUaBVN6ANoFkdAkvLQ6dUbUHV9lChoBmgJaA9DCJMCC2DKw2NAlIaUUpRoFU3oA2gWR0CS9Yhq0tyxdX2UKGgGaAloD0MIJPHydK4hZ0CUhpRSlGgVTegDaBZHQJL3T/m1YyR1fZQoaAZoCWgPQwgNN+Dzw6NgQJSGlFKUaBVN6ANoFkdAkvkXBciW3XV9lChoBmgJaA9DCHR8tDjjEGZAlIaUUpRoFU3oA2gWR0CS+sVp9JBgdX2UKGgGaAloD0MIr+lBQSm5YkCUhpRSlGgVTegDaBZHQJMFMrVe8f51fZQoaAZoCWgPQwiu2cpLfjllQJSGlFKUaBVN6ANoFkdAkwXmCuloDnV9lChoBmgJaA9DCLNEZ5lFlV9AlIaUUpRoFU3oA2gWR0CTBlT6i0v5dX2UKGgGaAloD0MIguMybmrGZECUhpRSlGgVTegDaBZHQJMIHWJ79ht1fZQoaAZoCWgPQwhckC3LVwZoQJSGlFKUaBVN6ANoFkdAkxkqij+Jg3V9lChoBmgJaA9DCBHHuriNoGNAlIaUUpRoFU3oA2gWR0CTG4pbD/EPdX2UKGgGaAloD0MI8x/Sb19rZkCUhpRSlGgVTegDaBZHQJMfAZFXq7l1fZQoaAZoCWgPQwjCL/XzpphmQJSGlFKUaBVN6ANoFkdAkyCLlmvnsHV9lChoBmgJaA9DCFQ3F3/bvl9AlIaUUpRoFU3oA2gWR0CTISXTmW+odX2UKGgGaAloD0MITfilft6LXECUhpRSlGgVTegDaBZHQJMl91JUYKp1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e97242853c013d29cf269478483ee534621f2fcfafe894b60660ab6ec46d4d5c
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2197c69c48a3f160c798819430e21615c3a6e2840ebc79db72498223ce5d6e17
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (220 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.0868489546168, "std_reward": 23.1195720741405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T22:09:56.392363"}