--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - balbus-classifier metrics: - accuracy - precision - recall - f1 model-index: - name: miosipof/whisper-small-ft-balbus-sep28k-v1.5 results: - task: name: Audio Classification type: audio-classification dataset: name: Apple dataset type: balbus-classifier config: default split: train args: default metrics: - name: Accuracy type: accuracy value: accuracy: 0.8111877154497023 - name: Precision type: precision value: precision: 0.8133174791914387 - name: Recall type: recall value: recall: 0.7365398420674802 - name: F1 type: f1 value: f1: 0.7730269353927294 --- # miosipof/whisper-small-ft-balbus-sep28k-v1.5 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Apple dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1083 - Accuracy: {'accuracy': 0.8111877154497023} - Precision: {'precision': 0.8133174791914387} - Recall: {'recall': 0.7365398420674802} - F1: {'f1': 0.7730269353927294} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:---------------------------------:|:-------------------------------:|:----------------------------:| | 0.1718 | 0.1253 | 100 | 0.1705 | {'accuracy': 0.564243183954873} | {'precision': 0.6190476190476191} | {'recall': 0.00466618808327351} | {'f1': 0.009262557890986818} | | 0.1683 | 0.2506 | 200 | 0.1653 | {'accuracy': 0.6118771544970228} | {'precision': 0.7677642980935875} | {'recall': 0.15900933237616655} | {'f1': 0.26345524829021705} | | 0.1595 | 0.3759 | 300 | 0.1494 | {'accuracy': 0.6847383265434033} | {'precision': 0.6486175115207373} | {'recall': 0.6062455132806892} | {'f1': 0.6267161410018552} | | 0.1299 | 0.5013 | 400 | 0.1266 | {'accuracy': 0.7608900031338138} | {'precision': 0.7008928571428571} | {'recall': 0.7889447236180904} | {'f1': 0.7423167848699763} | | 0.1174 | 0.6266 | 500 | 0.1140 | {'accuracy': 0.7977123158884363} | {'precision': 0.7800674409891345} | {'recall': 0.747307968413496} | {'f1': 0.7633363886342804} | | 0.1117 | 0.7519 | 600 | 0.1155 | {'accuracy': 0.7919147602632404} | {'precision': 0.7362281270252754} | {'recall': 0.8155061019382628} | {'f1': 0.773841961852861} | | 0.1072 | 0.8772 | 700 | 0.1074 | {'accuracy': 0.8096208085239737} | {'precision': 0.8282490597576264} | {'recall': 0.7114142139267767} | {'f1': 0.765398725622707} | | 0.106 | 1.0025 | 800 | 0.1078 | {'accuracy': 0.8077405202130994} | {'precision': 0.8175152749490835} | {'recall': 0.7203876525484566} | {'f1': 0.7658843732112193} | | 0.1001 | 1.1278 | 900 | 0.1079 | {'accuracy': 0.810404261986838} | {'precision': 0.8174858984689767} | {'recall': 0.7282842785355348} | {'f1': 0.7703113135914958} | | 0.092 | 1.2531 | 1000 | 0.1083 | {'accuracy': 0.8111877154497023} | {'precision': 0.8133174791914387} | {'recall': 0.7365398420674802} | {'f1': 0.7730269353927294} | ### Framework versions - Transformers 4.45.2 - Pytorch 2.2.0 - Datasets 3.2.0 - Tokenizers 0.20.3