--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - balbus-classifier metrics: - accuracy - precision - recall - f1 model-index: - name: miosipof/whisper-small-ft-balbus-sep28k-v1.6 results: - task: name: Audio Classification type: audio-classification dataset: name: Apple dataset type: balbus-classifier config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8100908806016922 - name: Precision type: precision value: 0.8183656957928802 - name: Recall type: recall value: 0.7261306532663316 - name: F1 type: f1 value: 0.7694941042221377 --- # miosipof/whisper-small-ft-balbus-sep28k-v1.6 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Apple dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1091 - Accuracy: 0.8101 - Precision: 0.8184 - Recall: 0.7261 - F1: 0.7695 - Roc-auc: 0.8006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.1683 | 0.2506 | 200 | 0.1682 | 0.5730 | 0.7364 | 0.0341 | 0.0652 | 0.5123 | | 0.1494 | 0.5013 | 400 | 0.1446 | 0.7084 | 0.6603 | 0.6838 | 0.6718 | 0.7056 | | 0.1212 | 0.7519 | 600 | 0.1236 | 0.7629 | 0.6917 | 0.8245 | 0.7523 | 0.7699 | | 0.1088 | 1.0025 | 800 | 0.1107 | 0.8062 | 0.8337 | 0.6945 | 0.7578 | 0.7936 | | 0.0955 | 1.2531 | 1000 | 0.1106 | 0.8081 | 0.8036 | 0.7416 | 0.7713 | 0.8006 | | 0.0997 | 1.5038 | 1200 | 0.1091 | 0.8101 | 0.8184 | 0.7261 | 0.7695 | 0.8006 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.2.0 - Datasets 3.2.0 - Tokenizers 0.20.3