--- library_name: peft tags: - generated_from_trainer base_model: meta-llama/Llama-2-7b-hf model-index: - name: models/run2 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # This file is used by the training script in train.ipynb. You can read more about # the format and see more examples at https://github.com/OpenAccess-AI-Collective/axolotl. # One of the parameters you might want to play around with is `num_epochs`: if you have a # smaller dataset size, making that large can have good results. base_model: meta-llama/Llama-2-7b-hf base_model_config: meta-llama/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: ./resources/train.jsonl type: alpaca dataset_prepared_path: ./resources/last_run_prepared val_set_size: 0.05 output_dir: ./models/run2 sequence_len: 4096 sample_packing: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: # This will report stats from your training run to https://wandb.ai/. If you don't want to create a wandb account you can comment this section out. wandb_project: google-boolq wandb_entity: wandb_watch: wandb_run_id: run2 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 5 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 10 eval_steps: 20 save_steps: 60 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# models/run2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co./meta-llama/Llama-2-7b-hf) on the google/boolq dataset. It achieves the following results on the evaluation set: - Loss: 0.3248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.1402 | 0.02 | 1 | 8.4654 | | 0.3619 | 0.3 | 20 | 0.3422 | | 0.3432 | 0.6 | 40 | 0.3379 | | 0.3227 | 0.9 | 60 | 0.3375 | | 0.3315 | 1.18 | 80 | 0.3373 | | 0.3204 | 1.48 | 100 | 0.3315 | | 0.3291 | 1.79 | 120 | 0.3300 | | 0.319 | 2.07 | 140 | 0.3277 | | 0.3165 | 2.37 | 160 | 0.3280 | | 0.3133 | 2.67 | 180 | 0.3388 | | 0.3088 | 2.97 | 200 | 0.3263 | | 0.3448 | 3.25 | 220 | 0.3252 | | 0.3264 | 3.55 | 240 | 0.3273 | | 0.2946 | 3.85 | 260 | 0.3310 | | 0.3212 | 4.13 | 280 | 0.3244 | | 0.3118 | 4.43 | 300 | 0.3245 | | 0.3377 | 4.73 | 320 | 0.3248 | ### Framework versions - PEFT 0.9.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0 ## Evaluation results | Model | Accuracy | Avg Time | Avg Cost | |-------------------------|----------|----------|---------------------| | gpt-4 | 0.874 | 0.624 | 0.00552 | | gpt-3.5-turbo | 0.824 | 0.530 | 0.0000916 | | llama2-7b-ft-boolq-run2 | 0.856 | 0.0432 | 0.0000155 | ### ft vs gpt4 - Cost Improvement: 357x - Latency Improvement: 12x ### ft vs gpt3.5-turbo - Cost Improvement: 6x - Latency Improvement: 14x