--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-wsdmhar results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9297520661157025 --- # swin-tiny-patch4-window7-224-finetuned-wsdmhar This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1990 - Accuracy: 0.9298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7388 | 1.0 | 53 | 0.6308 | 0.7118 | | 0.5099 | 2.0 | 106 | 0.3669 | 0.8485 | | 0.4319 | 3.0 | 159 | 0.3324 | 0.8685 | | 0.4002 | 4.0 | 212 | 0.2758 | 0.9029 | | 0.3589 | 5.0 | 265 | 0.2503 | 0.9132 | | 0.3096 | 6.0 | 318 | 0.2419 | 0.9136 | | 0.2708 | 7.0 | 371 | 0.2277 | 0.9232 | | 0.261 | 8.0 | 424 | 0.2168 | 0.9253 | | 0.2526 | 9.0 | 477 | 0.2099 | 0.9246 | | 0.2767 | 10.0 | 530 | 0.1990 | 0.9298 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1