Model save
Browse files
README.md
CHANGED
@@ -20,13 +20,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy:
|
25 |
-
- F1:
|
26 |
-
- Recall:
|
27 |
-
- Precision:
|
28 |
-
- Mcc:
|
29 |
-
- Auc:
|
30 |
|
31 |
## Model description
|
32 |
|
@@ -57,23 +57,23 @@ The following hyperparameters were used during training:
|
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc
|
61 |
-
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
|
73 |
|
74 |
### Framework versions
|
75 |
|
76 |
-
- Transformers 4.
|
77 |
-
- Pytorch 2.
|
78 |
- Datasets 2.19.1
|
79 |
- Tokenizers 0.19.1
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0870
|
24 |
+
- Accuracy: 0.9875
|
25 |
+
- F1: 0.9875
|
26 |
+
- Recall: 0.9875
|
27 |
+
- Precision: 0.9877
|
28 |
+
- Mcc: 0.9844
|
29 |
+
- Auc: 0.9968
|
30 |
|
31 |
## Model description
|
32 |
|
|
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:|
|
62 |
+
| 0.9826 | 1.0 | 200 | 0.9330 | 0.715 | 0.6769 | 0.7150 | 0.7516 | 0.6708 | 0.9379 |
|
63 |
+
| 0.2818 | 2.0 | 400 | 0.5294 | 0.8425 | 0.8362 | 0.8425 | 0.8731 | 0.8133 | 0.9738 |
|
64 |
+
| 0.1229 | 3.0 | 600 | 0.2185 | 0.945 | 0.9455 | 0.945 | 0.9476 | 0.9317 | 0.9917 |
|
65 |
+
| 0.0094 | 4.0 | 800 | 0.2905 | 0.9425 | 0.9428 | 0.9425 | 0.9476 | 0.9293 | 0.9932 |
|
66 |
+
| 0.0256 | 5.0 | 1000 | 0.1565 | 0.97 | 0.9702 | 0.97 | 0.9720 | 0.9629 | 0.9972 |
|
67 |
+
| 0.0032 | 6.0 | 1200 | 0.1577 | 0.9775 | 0.9775 | 0.9775 | 0.9778 | 0.9720 | 0.9941 |
|
68 |
+
| 0.0869 | 7.0 | 1400 | 0.1017 | 0.9825 | 0.9824 | 0.9825 | 0.9826 | 0.9782 | 0.9965 |
|
69 |
+
| 0.0019 | 8.0 | 1600 | 0.1194 | 0.9775 | 0.9776 | 0.9775 | 0.9783 | 0.9720 | 0.9967 |
|
70 |
+
| 0.0017 | 9.0 | 1800 | 0.0947 | 0.985 | 0.9850 | 0.9850 | 0.9851 | 0.9813 | 0.9972 |
|
71 |
+
| 0.0016 | 10.0 | 2000 | 0.0870 | 0.9875 | 0.9875 | 0.9875 | 0.9877 | 0.9844 | 0.9968 |
|
72 |
|
73 |
|
74 |
### Framework versions
|
75 |
|
76 |
+
- Transformers 4.41.0
|
77 |
+
- Pytorch 2.3.0+cu121
|
78 |
- Datasets 2.19.1
|
79 |
- Tokenizers 0.19.1
|