File size: 5,581 Bytes
a68f97d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import re
import argparse
import unicodedata
from typing import Dict
import torch
import torchaudio
from datasets import load_dataset, load_metric,  Audio, Dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
import re

chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–\·]'

def log_results(result: Dataset, args: Dict[str, str]):
    """ DO NOT CHANGE. This function computes and logs the result metrics. """

    log_outputs = args.log_outputs
    dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])

    # load metric
    wer = load_metric("wer")
    cer = load_metric("cer")

    # compute metrics
    wer_result = wer.compute(references=result["sentence"], predictions=result["pred_strings"])
    cer_result = cer.compute(references=result["sentence"], predictions=result["pred_strings"])

    # print & log results
    result_str = (
        f"WER: {wer_result}\n"
        f"CER: {cer_result}"
    )
    print(result_str)

    with open(f"{dataset_id}_eval_results.txt", "w") as f:
        f.write(result_str)

    # log all results in text file. Possibly interesting for analysis
    if log_outputs is not None:
        pred_file = f"log_{dataset_id}_predictions.txt"
        target_file = f"log_{dataset_id}_targets.txt"

        with open(pred_file, "w") as p, open(target_file, "w") as t:

            # mapping function to write output
            def write_to_file(batch, i):
                p.write(f"{i}" + "\n")
                p.write(batch["pred_strings"] + "\n")
                t.write(f"{i}" + "\n")
                t.write(batch["sentence"] + "\n")

            result.map(write_to_file, with_indices=True)

def load_data(dataset_id, language, split='test'):
    test_dataset = load_dataset(dataset_id, language, split=split, use_auth_token=True)
    test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
    return test_dataset

def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " "
    batch["sentence"] = re.sub('!', '', batch["sentence"]).lower() + " "
    batch["sentence"] = batch["sentence"].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " "
    batch["sentence"] = batch["sentence"].replace('[',"").replace("]","").replace("\\","").replace("«","").replace("»","").replace(")","").lower() + " "
    batch["sentence"] = batch["sentence"].replace("  "," ").replace("  "," ").replace("  "," ").lower() + " "
    batch["speech"] = batch["audio"]["array"]
    return batch

def main(args):
    test_dataset = load_data(args.dataset, args.config, args.split)
    test_dataset = test_dataset.map(speech_file_to_array_fn)
    model_id = args.model_id
    
    def evaluate_with_lm(batch):
        inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
        with torch.no_grad():
            logits = model(**inputs.to('cuda')).logits
        int_result = processor.batch_decode(logits.cpu().numpy())
        batch["pred_strings"] =  int_result.text
        return batch

    def evaluate(batch):
        inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
        with torch.no_grad():
            logits = model(inputs.input_values.to('cuda')).logits
        pred_ids = torch.argmax(logits, dim=-1)
        batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
        return batch

    if args.lm:
        processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_id,use_auth_token=True)
        model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
        model.to('cuda')
        result = test_dataset.map(evaluate_with_lm, batched=True, batch_size=4)
    else:
        processor = Wav2Vec2Processor.from_pretrained(model_id,use_auth_token=True)
        model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
        model.to("cuda")
        result = test_dataset.map(evaluate, batched=True, batch_size=4)

    log_results(result, args)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
    )
    parser.add_argument(
        "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
    )
    parser.add_argument(
        "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'`  for Common Voice"
    )
    parser.add_argument(
        "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
    )
    parser.add_argument(
        "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
    )
    parser.add_argument(
        "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
    )
    parser.add_argument(
        "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
    )
    parser.add_argument(
        "--lm", action='store_true', help="Using language model for evaluation or not."
    )
    args = parser.parse_args()

    main(args)