File size: 5,581 Bytes
a68f97d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import re
import argparse
import unicodedata
from typing import Dict
import torch
import torchaudio
from datasets import load_dataset, load_metric, Audio, Dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
import re
chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–\·]'
def log_results(result: Dataset, args: Dict[str, str]):
""" DO NOT CHANGE. This function computes and logs the result metrics. """
log_outputs = args.log_outputs
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["sentence"], predictions=result["pred_strings"])
cer_result = cer.compute(references=result["sentence"], predictions=result["pred_strings"])
# print & log results
result_str = (
f"WER: {wer_result}\n"
f"CER: {cer_result}"
)
print(result_str)
with open(f"{dataset_id}_eval_results.txt", "w") as f:
f.write(result_str)
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
pred_file = f"log_{dataset_id}_predictions.txt"
target_file = f"log_{dataset_id}_targets.txt"
with open(pred_file, "w") as p, open(target_file, "w") as t:
# mapping function to write output
def write_to_file(batch, i):
p.write(f"{i}" + "\n")
p.write(batch["pred_strings"] + "\n")
t.write(f"{i}" + "\n")
t.write(batch["sentence"] + "\n")
result.map(write_to_file, with_indices=True)
def load_data(dataset_id, language, split='test'):
test_dataset = load_dataset(dataset_id, language, split=split, use_auth_token=True)
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
return test_dataset
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " "
batch["sentence"] = re.sub('!', '', batch["sentence"]).lower() + " "
batch["sentence"] = batch["sentence"].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " "
batch["sentence"] = batch["sentence"].replace('[',"").replace("]","").replace("\\","").replace("«","").replace("»","").replace(")","").lower() + " "
batch["sentence"] = batch["sentence"].replace(" "," ").replace(" "," ").replace(" "," ").lower() + " "
batch["speech"] = batch["audio"]["array"]
return batch
def main(args):
test_dataset = load_data(args.dataset, args.config, args.split)
test_dataset = test_dataset.map(speech_file_to_array_fn)
model_id = args.model_id
def evaluate_with_lm(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(**inputs.to('cuda')).logits
int_result = processor.batch_decode(logits.cpu().numpy())
batch["pred_strings"] = int_result.text
return batch
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to('cuda')).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
return batch
if args.lm:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_id,use_auth_token=True)
model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
model.to('cuda')
result = test_dataset.map(evaluate_with_lm, batched=True, batch_size=4)
else:
processor = Wav2Vec2Processor.from_pretrained(model_id,use_auth_token=True)
model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
model.to("cuda")
result = test_dataset.map(evaluate, batched=True, batch_size=4)
log_results(result, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument(
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
)
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
)
parser.add_argument(
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--lm", action='store_true', help="Using language model for evaluation or not."
)
args = parser.parse_args()
main(args) |