Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ tags:
|
|
5 |
- sentence-similarity
|
6 |
- feature-extraction
|
7 |
base_model:
|
8 |
-
- avemio/
|
9 |
- BAAI/bge-m3
|
10 |
base_model_relation: merge
|
11 |
widget:
|
@@ -16,14 +16,14 @@ widget:
|
|
16 |
- 'search_query: i love autotrain'
|
17 |
pipeline_tag: sentence-similarity
|
18 |
datasets:
|
19 |
-
- avemio/
|
20 |
---
|
21 |
|
22 |
-
<img src="https://www.
|
23 |
|
24 |
-
#
|
25 |
|
26 |
-
This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co/datasets/avemio/
|
27 |
It was merged with the Base-Model [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) again to maintain performance on other languages again.
|
28 |
|
29 |
## Model Details
|
@@ -75,9 +75,9 @@ SentenceTransformer(
|
|
75 |
### STS (Semantic Textual Similarity)
|
76 |
- GermanSTSBenchmark
|
77 |
|
78 |
-
#### Comparison between Base-Model ([BGE-M3](https://huggingface.co/BAAI/bge-m3)), Finetuned Model ([
|
79 |
|
80 |
-
| TASK | [BGE-M3](https://huggingface.co/BAAI/bge-m3) | [
|
81 |
|-------------------------------------|-------|----------|------------|--------------|----------------|
|
82 |
| AmazonCounterfactualClassification | 0.6908 | 0.5449 | **0.7111** | -14.59% | 2.03% |
|
83 |
| AmazonReviewsClassification | **0.4634** | 0.2745 | 0.4571 | -18.89% | -0.63% |
|
@@ -91,9 +91,9 @@ SentenceTransformer(
|
|
91 |
| MTOPIntentClassification | **0.6808** | 0.4516 | 0.6684 | -22.92% | -1.25% |
|
92 |
| PawsXPairClassification | 0.5678 | 0.5077 | **0.5710** | -6.01% | 0.33% |
|
93 |
|
94 |
-
#### Comparison between Base-Model ([BGE-M3](https://huggingface.co/BAAI/bge-m3)), Merged Model with Base-Model ([Merged-BGE](https://huggingface.co/avemio/
|
95 |
|
96 |
-
| TASK | [BGE-M3](https://huggingface.co/BAAI/bge-m3) | Merged-BGE | [Merged-Snowflake](https://huggingface.co/avemio/
|
97 |
|-------------------------------------|-------|------------|------------------|--------------------|--------------------------|---------------------------------|
|
98 |
| AmazonCounterfactualClassification | 0.6908 | 0.7111 | **0.7152** | 2.94% | 3.53% | 0.58% |
|
99 |
| AmazonReviewsClassification | **0.4634** | 0.4571 | 0.4577 | -1.36% | -1.23% | 0.13% |
|
@@ -108,20 +108,20 @@ SentenceTransformer(
|
|
108 |
| PawsXPairClassification | 0.5678 | 0.5710 | **0.5803** | 0.56% | 2.18% | 1.63% |
|
109 |
|
110 |
|
111 |
-
## Evaluation on
|
112 |
|
113 |
Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array.
|
114 |
-
See Eval-Dataset and Evaluation Code [here](https://huggingface.co/datasets/avemio/
|
115 |
|
116 |
| Model Name | Accuracy |
|
117 |
|-------------------------------------------------|-----------|
|
118 |
| [bge-m3](https://huggingface.co/BAAI/bge-m3 ) | 0.8806 |
|
119 |
| [UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 0.8393 |
|
120 |
-
| [
|
121 |
-
| [
|
122 |
-
| [
|
123 |
-
| [
|
124 |
-
| [
|
125 |
|
126 |
## Usage
|
127 |
|
@@ -138,7 +138,7 @@ Then you can load this model and run inference.
|
|
138 |
from sentence_transformers import SentenceTransformer
|
139 |
|
140 |
# Download from the 🤗 Hub
|
141 |
-
model = SentenceTransformer("avemio/
|
142 |
# Run inference
|
143 |
sentences = [
|
144 |
'The weather is lovely today.',
|
|
|
5 |
- sentence-similarity
|
6 |
- feature-extraction
|
7 |
base_model:
|
8 |
+
- avemio/German-RAG-BGE-M3-TRIPLES-HESSIAN-AI
|
9 |
- BAAI/bge-m3
|
10 |
base_model_relation: merge
|
11 |
widget:
|
|
|
16 |
- 'search_query: i love autotrain'
|
17 |
pipeline_tag: sentence-similarity
|
18 |
datasets:
|
19 |
+
- avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI
|
20 |
---
|
21 |
|
22 |
+
<img src="https://www.German-RAG.ai/wp-content/uploads/2024/12/German-RAG-ICON-TO-WORDLOGO-Animation_Loop-small-ezgif.com-video-to-gif-converter.gif" alt="German-RAG Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
23 |
|
24 |
+
# German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI
|
25 |
|
26 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co/datasets/avemio/German-RAG-Embedding-Triples-Hessian-AI) with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
27 |
It was merged with the Base-Model [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) again to maintain performance on other languages again.
|
28 |
|
29 |
## Model Details
|
|
|
75 |
### STS (Semantic Textual Similarity)
|
76 |
- GermanSTSBenchmark
|
77 |
|
78 |
+
#### Comparison between Base-Model ([BGE-M3](https://huggingface.co/BAAI/bge-m3)), Finetuned Model ([German-RAG-BGE](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-HESSIAN-AI)) and Merged Model with Base-Model ([Merged-BGE](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI/))
|
79 |
|
80 |
+
| TASK | [BGE-M3](https://huggingface.co/BAAI/bge-m3) | [German-RAG-BGE](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-HESSIAN-AI) | Merged-BGE | German-RAG vs. BGE | Merged vs. BGE |
|
81 |
|-------------------------------------|-------|----------|------------|--------------|----------------|
|
82 |
| AmazonCounterfactualClassification | 0.6908 | 0.5449 | **0.7111** | -14.59% | 2.03% |
|
83 |
| AmazonReviewsClassification | **0.4634** | 0.2745 | 0.4571 | -18.89% | -0.63% |
|
|
|
91 |
| MTOPIntentClassification | **0.6808** | 0.4516 | 0.6684 | -22.92% | -1.25% |
|
92 |
| PawsXPairClassification | 0.5678 | 0.5077 | **0.5710** | -6.01% | 0.33% |
|
93 |
|
94 |
+
#### Comparison between Base-Model ([BGE-M3](https://huggingface.co/BAAI/bge-m3)), Merged Model with Base-Model ([Merged-BGE](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI/)) and our Merged-Model merged with [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0)
|
95 |
|
96 |
+
| TASK | [BGE-M3](https://huggingface.co/BAAI/bge-m3) | Merged-BGE | [Merged-Snowflake](https://huggingface.co/avemio/German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI/) | Merged-BGE vs. BGE | Merged-Snowflake vs. BGE | Merged-Snowflake vs. Merged-BGE |
|
97 |
|-------------------------------------|-------|------------|------------------|--------------------|--------------------------|---------------------------------|
|
98 |
| AmazonCounterfactualClassification | 0.6908 | 0.7111 | **0.7152** | 2.94% | 3.53% | 0.58% |
|
99 |
| AmazonReviewsClassification | **0.4634** | 0.4571 | 0.4577 | -1.36% | -1.23% | 0.13% |
|
|
|
108 |
| PawsXPairClassification | 0.5678 | 0.5710 | **0.5803** | 0.56% | 2.18% | 1.63% |
|
109 |
|
110 |
|
111 |
+
## Evaluation on German-RAG-EMBEDDING-BENCHMARK
|
112 |
|
113 |
Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array.
|
114 |
+
See Eval-Dataset and Evaluation Code [here](https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-BENCHMARK)
|
115 |
|
116 |
| Model Name | Accuracy |
|
117 |
|-------------------------------------------------|-----------|
|
118 |
| [bge-m3](https://huggingface.co/BAAI/bge-m3 ) | 0.8806 |
|
119 |
| [UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 0.8393 |
|
120 |
+
| [German-RAG-BGE-M3-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-HESSIAN-AI) | 0.8857 |
|
121 |
+
| [German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI) | **0.8866** |
|
122 |
+
| [German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI) | **0.8866** |
|
123 |
+
| [German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI) | 0.8763 |
|
124 |
+
| [German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI) | 0.8771 |
|
125 |
|
126 |
## Usage
|
127 |
|
|
|
138 |
from sentence_transformers import SentenceTransformer
|
139 |
|
140 |
# Download from the 🤗 Hub
|
141 |
+
model = SentenceTransformer("avemio/German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI")
|
142 |
# Run inference
|
143 |
sentences = [
|
144 |
'The weather is lovely today.',
|