--- library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction base_model: WhereIsAI/UAE-Large-V1 widget: - source_sentence: 'search_query: i love autotrain' sentences: - 'search_query: huggingface auto train' - 'search_query: hugging face auto train' - 'search_query: i love autotrain' pipeline_tag: sentence-similarity datasets: - avemio/GRAG-EMBEDDING-TRIPLES-HESSIAN-AI license: mit language: - de - en --- GRAG Logo # GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co./datasets/avemio/GRAG-Embedding-Triples-Hessian-AI) with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Evaluation MTEB-Tasks ### Classification - AmazonCounterfactualClassification - AmazonReviewsClassification - MassiveIntentClassification - MassiveScenarioClassification - MTOPDomainClassification - MTOPIntentClassification ### Pair Classification - FalseFriendsGermanEnglish - PawsXPairClassification ### Retrieval - GermanQuAD-Retrieval - GermanDPR ### STS (Semantic Textual Similarity) - GermanSTSBenchmark | TASK | [UAE](https://huggingface.co./WhereIsAI/UAE-Large-V1/) | GRAG-UAE | [Merged-UAE](https://huggingface.co./avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI/) | GRAG vs. UAE | Merged vs. UAE | |-------------------------------------|-------|----------|------------|--------------|----------------| | AmazonCounterfactualClassification | **0.5650** | 0.5449 | 0.5401 | -2.01% | -2.48% | | AmazonReviewsClassification | 0.2738 | 0.2745 | **0.2782** | 0.08% | 0.44% | | FalseFriendsGermanEnglish | **0.4808** | 0.4777 | 0.4703 | -0.32% | -1.05% | | GermanQuAD-Retrieval | 0.7811 | 0.8353 | **0.8628** | 5.42% | 8.18% | | GermanSTSBenchmark | 0.6421 | 0.6568 | **0.6754** | 1.47% | 3.33% | | MassiveIntentClassification | **0.5139** | 0.4884 | 0.4714 | -2.55% | -4.25% | | MassiveScenarioClassification | 0.6062 | 0.5837 | **0.6111** | -2.25% | 0.49% | | GermanDPR | 0.6750 | 0.7210 | **0.7507** | 4.60% | 7.57% | | MTOPDomainClassification | 0.7625 | 0.7450 | **0.7686** | -1.75% | 0.61% | | MTOPIntentClassification | **0.4994** | 0.4516 | 0.4413 | -4.77% | -5.80% | | PawsXPairClassification | **0.5452** | 0.5077 | 0.5162 | -3.76% | -2.90% | ## Evaluation on GRAG-EMBEDDING-BENCHMARK Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array. See Eval-Dataset and Evaluation Code [here](https://huggingface.co./datasets/avemio/GRAG-EMBEDDING-BENCHMARK) | Model Name | Accuracy | |-------------------------------------------------|-----------| | [bge-m3](https://huggingface.co./BAAI/bge-m3 ) | 0.8806 | | [UAE-Large-V1](https://huggingface.co./WhereIsAI/UAE-Large-V1) | 0.8393 | | [GRAG-BGE-M3-TRIPLES-HESSIAN-AI](https://huggingface.co./avemio/GRAG-BGE-M3-TRIPLES-HESSIAN-AI) | 0.8857 | | [GRAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co./avemio/GRAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI) | **0.8866** | | [GRAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI](https://huggingface.co./avemio/GRAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI) | **0.8866** | | [GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI](https://huggingface.co./avemio/GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI) | 0.8763 | | [GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co./avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI) | 0.8771 | ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("avemio/GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Accelerate: 0.34.2 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ``` @article{li2023angle, title={AnglE-optimized Text Embeddings}, author={Li, Xianming and Li, Jing}, journal={arXiv preprint arXiv:2309.12871}, year={2023} } ```