--- license: apache-2.0 tags: - generated_from_trainer datasets: - mnist metrics: - accuracy model-index: - name: image-classification results: - task: name: Image Classification type: image-classification dataset: name: mnist type: mnist args: mnist metrics: - name: Accuracy type: accuracy value: 0.9833333333333333 - task: type: image-classification name: Image Classification dataset: name: autoevaluate/mnist-sample type: autoevaluate/mnist-sample config: autoevaluate--mnist-sample split: test metrics: - name: Accuracy type: accuracy value: 0.95 verified: true - name: Precision Macro type: precision value: 0.9478535353535353 verified: true - name: Precision Micro type: precision value: 0.95 verified: true - name: Precision Weighted type: precision value: 0.9510353535353535 verified: true - name: Recall Macro type: recall value: 0.9530555555555555 verified: true - name: Recall Micro type: recall value: 0.95 verified: true - name: Recall Weighted type: recall value: 0.95 verified: true - name: F1 Macro type: f1 value: 0.9496669557378175 verified: true - name: F1 Micro type: f1 value: 0.9500000000000001 verified: true - name: F1 Weighted type: f1 value: 0.9496869212452598 verified: true - name: loss type: loss value: 0.12408628314733505 verified: true - name: matthews_correlation type: matthews_correlation value: 0.9442456228021371 verified: true --- # image-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1