--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 - autoevaluate/conll2003-sample metrics: - precision - recall - f1 - accuracy model-index: - name: entity-extraction results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.8862817854414493 - name: Recall type: recall value: 0.9084908826490659 - name: F1 type: f1 value: 0.8972489227709645 - name: Accuracy type: accuracy value: 0.9774889986814304 --- # entity-extraction This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0808 - Precision: 0.8863 - Recall: 0.9085 - F1: 0.8972 - Accuracy: 0.9775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2552 | 1.0 | 878 | 0.0808 | 0.8863 | 0.9085 | 0.8972 | 0.9775 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1