File size: 4,012 Bytes
f24aff8
 
 
 
 
 
bf630ca
f24aff8
 
 
 
 
 
 
 
 
 
290337a
f24aff8
 
 
 
 
290337a
f24aff8
290337a
 
f24aff8
290337a
 
f24aff8
290337a
 
f24aff8
290337a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24aff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
- autoevaluate/conll2003-sample
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: entity-extraction
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - type: precision
      value: 0.8862817854414493
      name: Precision
    - type: recall
      value: 0.9084908826490659
      name: Recall
    - type: f1
      value: 0.8972489227709645
      name: F1
    - type: accuracy
      value: 0.9774889986814304
      name: Accuracy
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: autoevaluate/conll2003-sample
      type: autoevaluate/conll2003-sample
      config: autoevaluate--conll2003-sample
      split: test
    metrics:
    - type: accuracy
      value: 0.9680247550283652
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTgzYzIwNTcyNzgxN2JiNGU0Y2RhMmY2YzRhMzUyNGY5NGE2MDA0NTVmYTFjYzdjMWQ2M2UxOTY4YmJkNWI2OCIsInZlcnNpb24iOjF9.TXZVtZoAvkUw_iXjmVwAdPtzhimwv33pA0BqxbKLGP3QSpJAsFbAbDwh2kUaKH4mTtgmcGgmtsywIgV5_ZEFAA
    - type: precision
      value: 0.9708377518557795
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWJkYzQ0MzhmNGE4Y2UyMmIzNThmMTdlZjMzODdlOWMzMTg1NTEwNWQ3NDMyNTYxODZiMzZhYTQ5NDU2ZGZlMSIsInZlcnNpb24iOjF9.rFvd0bxUagfktMsv-Q0NJr2WN2MuZ74dR0Opq9_MqjXnhi1wPxRcfbjw2RYUKnRM9PVVkBrb3WyTGYljcJYMCA
    - type: recall
      value: 0.9754928076718167
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjkzMGExNzU3NWY4Y2E0ODgyZTU5MzY1NTYxMDU3M2E3N2RkMmEwNzRmNWRmZDA1N2Y3MDQ5OGE3ZWQ3ZDA0NyIsInZlcnNpb24iOjF9.yAlh4o8i2o4GG6TES8-IoYlvqCh8NS09OeQ8yILRiRo8Uk9u6CdaZAklstD60jyMlanP7c_IP-SQsqokJ41tCg
    - type: f1
      value: 0.9731597129949509
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmFiNDdjODdjNGJhYjNiZGUwNzc2OTQ0NDhhMjk5ZTFlMjM4NTE5MTViYTBlYzI2ZTE4MzQ5MmE3MTBiZWU0ZiIsInZlcnNpb24iOjF9.amNItmETm5mBYgwTYkYEO7L7mlO6xxPJhHfy8X8LidtLir8euAUxoj4gLro9-NETDGaZOLLvvjx7SRyODMwrAg
    - type: loss
      value: 0.1187286302447319
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWFlYThiZGFhYzI4ZjZiNDUyMmQ3ZDVhMGIzZDJhNmU3ZjEwNTU1NTE2YjA3ZjM2NGNlNTA1MmYwNWY4NTdjMiIsInZlcnNpb24iOjF9.qBgBdwqISdVvRHyJQ-8JgqeGGG6J1wrNEcoJiqUgZ8OQIn8FKi6I0xmdBukkoYMapegWqwIGjNVNF4WAsjoyAg
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# entity-extraction

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0808
- Precision: 0.8863
- Recall: 0.9085
- F1: 0.8972
- Accuracy: 0.9775

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2552        | 1.0   | 878  | 0.0808          | 0.8863    | 0.9085 | 0.8972 | 0.9775   |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1