austinpatrickm commited on
Commit
7cee21e
·
verified ·
1 Parent(s): 2005599

Upload 12 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+
9
+ ---
10
+
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Evaluation Results
39
+
40
+ <!--- Describe how your model was evaluated -->
41
+
42
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
43
+
44
+
45
+ ## Training
46
+ The model was trained with the parameters:
47
+
48
+ **DataLoader**:
49
+
50
+ `torch.utils.data.dataloader.DataLoader` of length 361 with parameters:
51
+ ```
52
+ {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
53
+ ```
54
+
55
+ **Loss**:
56
+
57
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
58
+ ```
59
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
60
+ ```
61
+
62
+ Parameters of the fit()-Method:
63
+ ```
64
+ {
65
+ "epochs": 2,
66
+ "evaluation_steps": 50,
67
+ "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
68
+ "max_grad_norm": 1,
69
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
70
+ "optimizer_params": {
71
+ "lr": 2e-05
72
+ },
73
+ "scheduler": "WarmupLinear",
74
+ "steps_per_epoch": null,
75
+ "warmup_steps": 72,
76
+ "weight_decay": 0.01
77
+ }
78
+ ```
79
+
80
+
81
+ ## Full Model Architecture
82
+ ```
83
+ SentenceTransformer(
84
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
85
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
86
+ (2): Normalize()
87
+ )
88
+ ```
89
+
90
+ ## Citing & Authors
91
+
92
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cos_sim-Accuracy@1,cos_sim-Accuracy@3,cos_sim-Accuracy@5,cos_sim-Accuracy@10,cos_sim-Precision@1,cos_sim-Recall@1,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-Precision@5,cos_sim-Recall@5,cos_sim-Precision@10,cos_sim-Recall@10,cos_sim-MRR@10,cos_sim-NDCG@10,cos_sim-MAP@100,dot_score-Accuracy@1,dot_score-Accuracy@3,dot_score-Accuracy@5,dot_score-Accuracy@10,dot_score-Precision@1,dot_score-Recall@1,dot_score-Precision@3,dot_score-Recall@3,dot_score-Precision@5,dot_score-Recall@5,dot_score-Precision@10,dot_score-Recall@10,dot_score-MRR@10,dot_score-NDCG@10,dot_score-MAP@100
2
+ 0,50,0.7375138734739178,0.8823529411764706,0.9156492785793563,0.9478357380688124,0.7375138734739178,0.7375138734739178,0.29411764705882354,0.8823529411764706,0.18312985571587126,0.9156492785793563,0.09478357380688125,0.9478357380688124,0.815500414002079,0.8480763340385937,0.8177480271444728,0.7375138734739178,0.8823529411764706,0.9156492785793563,0.9478357380688124,0.7375138734739178,0.7375138734739178,0.29411764705882354,0.8823529411764706,0.18312985571587126,0.9156492785793563,0.09478357380688125,0.9478357380688124,0.815500414002079,0.8480763340385937,0.8177480271444728
3
+ 0,100,0.7358490566037735,0.8873473917869035,0.9214761376248612,0.9531076581576027,0.7358490566037735,0.7358490566037735,0.2957824639289678,0.8873473917869035,0.18429522752497227,0.9214761376248612,0.09531076581576027,0.9531076581576027,0.8167322904004364,0.8503488339507621,0.8188755253661126,0.7358490566037735,0.8873473917869035,0.9214761376248612,0.9531076581576027,0.7358490566037735,0.7358490566037735,0.2957824639289678,0.8873473917869035,0.18429522752497227,0.9214761376248612,0.09531076581576027,0.9531076581576027,0.8167322904004364,0.8503488339507621,0.8188755253661126
4
+ 0,150,0.7530521642619312,0.9003884572697003,0.9295227524972253,0.9605993340732519,0.7530521642619312,0.7530521642619312,0.3001294857565667,0.9003884572697003,0.18590455049944507,0.9295227524972253,0.0960599334073252,0.9605993340732519,0.8310672224864791,0.8630393046819916,0.8328703978573435,0.7530521642619312,0.9003884572697003,0.9295227524972253,0.9605993340732519,0.7530521642619312,0.7530521642619312,0.3001294857565667,0.9003884572697003,0.18590455049944507,0.9295227524972253,0.0960599334073252,0.9605993340732519,0.8310672224864791,0.8630393046819916,0.8328703978573435
5
+ 0,200,0.7411209766925638,0.894284128745838,0.9267480577136515,0.9589345172031076,0.7411209766925638,0.7411209766925638,0.29809470958194595,0.894284128745838,0.1853496115427303,0.9267480577136515,0.09589345172031077,0.9589345172031076,0.8224010358860526,0.856064529310047,0.8241362489231617,0.7411209766925638,0.894284128745838,0.9267480577136515,0.9589345172031076,0.7411209766925638,0.7411209766925638,0.29809470958194595,0.894284128745838,0.1853496115427303,0.9267480577136515,0.09589345172031077,0.9589345172031076,0.8224010358860526,0.856064529310047,0.8241362489231617
6
+ 0,250,0.7774694783573807,0.913984461709212,0.9384017758046614,0.9689234184239733,0.7774694783573807,0.7774694783573807,0.304661487236404,0.913984461709212,0.18768035516093232,0.9384017758046614,0.09689234184239735,0.9689234184239733,0.8491026284727734,0.8786559902719989,0.8504415951584594,0.7774694783573807,0.913984461709212,0.9384017758046614,0.9689234184239733,0.7774694783573807,0.7774694783573807,0.304661487236404,0.913984461709212,0.18768035516093232,0.9384017758046614,0.09689234184239735,0.9689234184239733,0.8491026284727734,0.8786559902719989,0.8504415951584594
7
+ 0,300,0.7949500554938956,0.9248057713651499,0.9481132075471698,0.9730854605993341,0.7949500554938956,0.7949500554938956,0.30826859045504995,0.9248057713651499,0.18962264150943398,0.9481132075471698,0.09730854605993342,0.9730854605993341,0.8626543699240702,0.8899502984565177,0.8638710903828369,0.7949500554938956,0.9248057713651499,0.9481132075471698,0.9730854605993341,0.7949500554938956,0.7949500554938956,0.30826859045504995,0.9248057713651499,0.18962264150943398,0.9481132075471698,0.09730854605993342,0.9730854605993341,0.8626543699240702,0.8899502984565177,0.8638710903828369
8
+ 0,350,0.7996670366259712,0.9267480577136515,0.9506104328523862,0.9739178690344062,0.7996670366259712,0.7996670366259712,0.3089160192378838,0.9267480577136515,0.19012208657047727,0.9506104328523862,0.09739178690344062,0.9739178690344062,0.8662490310589643,0.8929012075984638,0.8674735410630928,0.7996670366259712,0.9267480577136515,0.9506104328523862,0.9739178690344062,0.7996670366259712,0.7996670366259712,0.3089160192378838,0.9267480577136515,0.19012208657047727,0.9506104328523862,0.09739178690344062,0.9739178690344062,0.8662490310589643,0.8929012075984638,0.8674735410630928
9
+ 0,-1,0.7974472807991121,0.9267480577136515,0.9492230854605993,0.9736403995560489,0.7974472807991121,0.7974472807991121,0.3089160192378838,0.9267480577136515,0.1898446170921199,0.9492230854605993,0.09736403995560487,0.9736403995560489,0.8642107314623962,0.8912750988502446,0.8654275347811342,0.7974472807991121,0.9267480577136515,0.9492230854605993,0.9736403995560489,0.7974472807991121,0.7974472807991121,0.3089160192378838,0.9267480577136515,0.1898446170921199,0.9492230854605993,0.09736403995560487,0.9736403995560489,0.8642107314623962,0.8912750988502446,0.8654275347811342
10
+ 1,50,0.7991120976692564,0.9317425083240843,0.9539400665926748,0.9758601553829079,0.7991120976692564,0.7991120976692564,0.3105808361080281,0.9317425083240843,0.19078801331853495,0.9539400665926748,0.0975860155382908,0.9758601553829079,0.867538052957032,0.8944013224159588,0.8686165592983838,0.7991120976692564,0.9317425083240843,0.9539400665926748,0.9758601553829079,0.7991120976692564,0.7991120976692564,0.3105808361080281,0.9317425083240843,0.19078801331853495,0.9539400665926748,0.0975860155382908,0.9758601553829079,0.867538052957032,0.8944013224159588,0.8686165592983838
11
+ 1,100,0.7941176470588235,0.9270255271920089,0.9536625971143174,0.9761376248612652,0.7941176470588235,0.7941176470588235,0.3090085090640029,0.9270255271920089,0.1907325194228635,0.9536625971143174,0.09761376248612655,0.9761376248612652,0.864022999136761,0.8918035051940911,0.865111091586305,0.7941176470588235,0.9270255271920089,0.9536625971143174,0.9761376248612652,0.7941176470588235,0.7941176470588235,0.3090085090640029,0.9270255271920089,0.1907325194228635,0.9536625971143174,0.09761376248612655,0.9761376248612652,0.864022999136761,0.8918035051940911,0.865111091586305
12
+ 1,150,0.7974472807991121,0.9248057713651499,0.9506104328523862,0.9764150943396226,0.7974472807991121,0.7974472807991121,0.30826859045504995,0.9248057713651499,0.19012208657047727,0.9506104328523862,0.09764150943396226,0.9764150943396226,0.8650611974349487,0.892557445853724,0.8661764090532205,0.7974472807991121,0.9248057713651499,0.9506104328523862,0.9764150943396226,0.7974472807991121,0.7974472807991121,0.30826859045504995,0.9248057713651499,0.19012208657047727,0.9506104328523862,0.09764150943396226,0.9764150943396226,0.8650611974349487,0.892557445853724,0.8661764090532205
13
+ 1,200,0.7996670366259712,0.9292452830188679,0.9522752497225305,0.97669256381798,0.7996670366259712,0.7996670366259712,0.30974842767295596,0.9292452830188679,0.1904550499445061,0.9522752497225305,0.09766925638179802,0.97669256381798,0.8672158800627169,0.8943119006935032,0.868363441228994,0.7996670366259712,0.9292452830188679,0.9522752497225305,0.97669256381798,0.7996670366259712,0.7996670366259712,0.30974842767295596,0.9292452830188679,0.1904550499445061,0.9522752497225305,0.09766925638179802,0.97669256381798,0.8672158800627169,0.8943119006935032,0.868363441228994
14
+ 1,250,0.7980022197558269,0.9292452830188679,0.9525527192008879,0.9769700332963374,0.7980022197558269,0.7980022197558269,0.30974842767295596,0.9292452830188679,0.19051054384017763,0.9525527192008879,0.09769700332963374,0.9769700332963374,0.8672732457762977,0.8944556061461204,0.8684116361568051,0.7980022197558269,0.9292452830188679,0.9525527192008879,0.9769700332963374,0.7980022197558269,0.7980022197558269,0.30974842767295596,0.9292452830188679,0.19051054384017763,0.9525527192008879,0.09769700332963374,0.9769700332963374,0.8672732457762977,0.8944556061461204,0.8684116361568051
15
+ 1,300,0.7980022197558269,0.9298002219755827,0.9519977802441731,0.97669256381798,0.7980022197558269,0.7980022197558269,0.30993340732519425,0.9298002219755827,0.19039955604883463,0.9519977802441731,0.097669256381798,0.97669256381798,0.8666640241002059,0.8939180879474561,0.8678138768889584,0.7980022197558269,0.9298002219755827,0.9519977802441731,0.97669256381798,0.7980022197558269,0.7980022197558269,0.30993340732519425,0.9298002219755827,0.19039955604883463,0.9519977802441731,0.097669256381798,0.97669256381798,0.8666640241002059,0.8939180879474561,0.8678138768889584
16
+ 1,350,0.798834628190899,0.9303551609322974,0.9517203107658158,0.97669256381798,0.798834628190899,0.798834628190899,0.31011838697743244,0.9303551609322974,0.19034406215316316,0.9517203107658158,0.097669256381798,0.97669256381798,0.8670116316967035,0.8941711396835288,0.8681548715362037,0.798834628190899,0.9303551609322974,0.9517203107658158,0.97669256381798,0.798834628190899,0.798834628190899,0.31011838697743244,0.9303551609322974,0.19034406215316316,0.9517203107658158,0.097669256381798,0.97669256381798,0.8670116316967035,0.8941711396835288,0.8681548715362037
17
+ 1,-1,0.7991120976692564,0.9303551609322974,0.9517203107658158,0.97669256381798,0.7991120976692564,0.7991120976692564,0.31011838697743244,0.9303551609322974,0.19034406215316316,0.9517203107658158,0.097669256381798,0.97669256381798,0.8671542201786371,0.8942775506512176,0.8683015490205617,0.7991120976692564,0.9303551609322974,0.9517203107658158,0.97669256381798,0.7991120976692564,0.7991120976692564,0.31011838697743244,0.9303551609322974,0.19034406215316316,0.9517203107658158,0.097669256381798,0.97669256381798,0.8671542201786371,0.8942775506512176,0.8683015490205617
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c3d2aedcbb87c681e70dbf606950b181cf9dac5160417fcb10739a3e991381d
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff