--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-tweets-sentiment results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - type: accuracy value: 0.7295 name: Accuracy - type: f1 value: 0.7303196028048928 name: F1 --- # distilbert-base-uncased-finetuned-tweets-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8192 - Accuracy: 0.7295 - F1: 0.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7126 | 1.0 | 713 | 0.6578 | 0.7185 | 0.7181 | | 0.5514 | 2.0 | 1426 | 0.6249 | 0.7005 | 0.7046 | | 0.4406 | 3.0 | 2139 | 0.7053 | 0.731 | 0.7296 | | 0.3511 | 4.0 | 2852 | 0.7580 | 0.718 | 0.7180 | | 0.2809 | 5.0 | 3565 | 0.8192 | 0.7295 | 0.7303 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3