--- base_model: deepset/gbert-large model-index: - name: schwurpert results: [] language: - de pipeline_tag: fill-mask --- # schwurpert This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co./deepset/gbert-large) on Telegram posts written mostly by German conspiracy theorists (and some more credible authors). The complete corpus is available on request. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 92927, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.7997 | 0 | ### Framework versions - Transformers 4.33.2 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3