|
import torch |
|
import torch.utils.data |
|
from librosa.filters import mel as librosa_mel_fn |
|
|
|
|
|
MAX_WAV_VALUE = 32768.0 |
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
""" |
|
PARAMS |
|
------ |
|
C: compression factor |
|
""" |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1): |
|
""" |
|
PARAMS |
|
------ |
|
C: compression factor used to compress |
|
""" |
|
return torch.exp(x) / C |
|
|
|
|
|
def spectral_normalize_torch(magnitudes): |
|
return dynamic_range_compression_torch(magnitudes) |
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes): |
|
return dynamic_range_decompression_torch(magnitudes) |
|
|
|
|
|
|
|
mel_basis = {} |
|
hann_window = {} |
|
|
|
|
|
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): |
|
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram. |
|
|
|
Args: |
|
y :: (B, T) - Audio waveforms |
|
n_fft |
|
sampling_rate |
|
hop_size |
|
win_size |
|
center |
|
Returns: |
|
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram |
|
""" |
|
|
|
if torch.min(y) < -1.0: |
|
print("min value is ", torch.min(y)) |
|
if torch.max(y) > 1.0: |
|
print("max value is ", torch.max(y)) |
|
|
|
|
|
global hann_window |
|
dtype_device = str(y.dtype) + "_" + str(y.device) |
|
wnsize_dtype_device = str(win_size) + "_" + dtype_device |
|
if wnsize_dtype_device not in hann_window: |
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( |
|
dtype=y.dtype, device=y.device |
|
) |
|
|
|
|
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), |
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), |
|
mode="reflect", |
|
) |
|
y = y.squeeze(1) |
|
|
|
|
|
spec = torch.stft( |
|
y, |
|
n_fft, |
|
hop_length=hop_size, |
|
win_length=win_size, |
|
window=hann_window[wnsize_dtype_device], |
|
center=center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=False, |
|
) |
|
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) |
|
return spec |
|
|
|
|
|
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): |
|
|
|
global mel_basis |
|
dtype_device = str(spec.dtype) + "_" + str(spec.device) |
|
fmax_dtype_device = str(fmax) + "_" + dtype_device |
|
if fmax_dtype_device not in mel_basis: |
|
mel = librosa_mel_fn( |
|
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax |
|
) |
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to( |
|
dtype=spec.dtype, device=spec.device |
|
) |
|
|
|
|
|
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec) |
|
melspec = spectral_normalize_torch(melspec) |
|
return melspec |
|
|
|
|
|
def mel_spectrogram_torch( |
|
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False |
|
): |
|
"""Convert waveform into Mel-frequency Log-amplitude spectrogram. |
|
|
|
Args: |
|
y :: (B, T) - Waveforms |
|
Returns: |
|
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram |
|
""" |
|
|
|
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center) |
|
|
|
|
|
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax) |
|
|
|
return melspec |
|
|