|
import os, traceback |
|
import numpy as np |
|
import torch |
|
import torch.utils.data |
|
|
|
from mel_processing import spectrogram_torch |
|
from utils import load_wav_to_torch, load_filepaths_and_text |
|
|
|
|
|
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset): |
|
""" |
|
1) loads audio, text pairs |
|
2) normalizes text and converts them to sequences of integers |
|
3) computes spectrograms from audio files. |
|
""" |
|
|
|
def __init__(self, audiopaths_and_text, hparams): |
|
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) |
|
self.max_wav_value = hparams.max_wav_value |
|
self.sampling_rate = hparams.sampling_rate |
|
self.filter_length = hparams.filter_length |
|
self.hop_length = hparams.hop_length |
|
self.win_length = hparams.win_length |
|
self.sampling_rate = hparams.sampling_rate |
|
self.min_text_len = getattr(hparams, "min_text_len", 1) |
|
self.max_text_len = getattr(hparams, "max_text_len", 5000) |
|
self._filter() |
|
|
|
def _filter(self): |
|
""" |
|
Filter text & store spec lengths |
|
""" |
|
|
|
|
|
|
|
audiopaths_and_text_new = [] |
|
lengths = [] |
|
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text: |
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: |
|
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv]) |
|
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) |
|
self.audiopaths_and_text = audiopaths_and_text_new |
|
self.lengths = lengths |
|
|
|
def get_sid(self, sid): |
|
sid = torch.LongTensor([int(sid)]) |
|
return sid |
|
|
|
def get_audio_text_pair(self, audiopath_and_text): |
|
|
|
file = audiopath_and_text[0] |
|
phone = audiopath_and_text[1] |
|
pitch = audiopath_and_text[2] |
|
pitchf = audiopath_and_text[3] |
|
dv = audiopath_and_text[4] |
|
|
|
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf) |
|
spec, wav = self.get_audio(file) |
|
dv = self.get_sid(dv) |
|
|
|
len_phone = phone.size()[0] |
|
len_spec = spec.size()[-1] |
|
|
|
if len_phone != len_spec: |
|
len_min = min(len_phone, len_spec) |
|
|
|
len_wav = len_min * self.hop_length |
|
|
|
spec = spec[:, :len_min] |
|
wav = wav[:, :len_wav] |
|
|
|
phone = phone[:len_min, :] |
|
pitch = pitch[:len_min] |
|
pitchf = pitchf[:len_min] |
|
|
|
return (spec, wav, phone, pitch, pitchf, dv) |
|
|
|
def get_labels(self, phone, pitch, pitchf): |
|
phone = np.load(phone) |
|
phone = np.repeat(phone, 2, axis=0) |
|
pitch = np.load(pitch) |
|
pitchf = np.load(pitchf) |
|
n_num = min(phone.shape[0], 900) |
|
|
|
phone = phone[:n_num, :] |
|
pitch = pitch[:n_num] |
|
pitchf = pitchf[:n_num] |
|
phone = torch.FloatTensor(phone) |
|
pitch = torch.LongTensor(pitch) |
|
pitchf = torch.FloatTensor(pitchf) |
|
return phone, pitch, pitchf |
|
|
|
def get_audio(self, filename): |
|
audio, sampling_rate = load_wav_to_torch(filename) |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError( |
|
"{} SR doesn't match target {} SR".format( |
|
sampling_rate, self.sampling_rate |
|
) |
|
) |
|
audio_norm = audio |
|
|
|
|
|
|
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec_filename = filename.replace(".wav", ".spec.pt") |
|
if os.path.exists(spec_filename): |
|
try: |
|
spec = torch.load(spec_filename) |
|
except: |
|
print(spec_filename, traceback.format_exc()) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.sampling_rate, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) |
|
else: |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.sampling_rate, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) |
|
return spec, audio_norm |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio_text_pair(self.audiopaths_and_text[index]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths_and_text) |
|
|
|
|
|
class TextAudioCollateMultiNSFsid: |
|
"""Zero-pads model inputs and targets""" |
|
|
|
def __init__(self, return_ids=False): |
|
self.return_ids = return_ids |
|
|
|
def __call__(self, batch): |
|
"""Collate's training batch from normalized text and aduio |
|
PARAMS |
|
------ |
|
batch: [text_normalized, spec_normalized, wav_normalized] |
|
""" |
|
|
|
_, ids_sorted_decreasing = torch.sort( |
|
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True |
|
) |
|
|
|
max_spec_len = max([x[0].size(1) for x in batch]) |
|
max_wave_len = max([x[1].size(1) for x in batch]) |
|
spec_lengths = torch.LongTensor(len(batch)) |
|
wave_lengths = torch.LongTensor(len(batch)) |
|
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) |
|
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) |
|
spec_padded.zero_() |
|
wave_padded.zero_() |
|
|
|
max_phone_len = max([x[2].size(0) for x in batch]) |
|
phone_lengths = torch.LongTensor(len(batch)) |
|
phone_padded = torch.FloatTensor( |
|
len(batch), max_phone_len, batch[0][2].shape[1] |
|
) |
|
pitch_padded = torch.LongTensor(len(batch), max_phone_len) |
|
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len) |
|
phone_padded.zero_() |
|
pitch_padded.zero_() |
|
pitchf_padded.zero_() |
|
|
|
sid = torch.LongTensor(len(batch)) |
|
|
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
spec = row[0] |
|
spec_padded[i, :, : spec.size(1)] = spec |
|
spec_lengths[i] = spec.size(1) |
|
|
|
wave = row[1] |
|
wave_padded[i, :, : wave.size(1)] = wave |
|
wave_lengths[i] = wave.size(1) |
|
|
|
phone = row[2] |
|
phone_padded[i, : phone.size(0), :] = phone |
|
phone_lengths[i] = phone.size(0) |
|
|
|
pitch = row[3] |
|
pitch_padded[i, : pitch.size(0)] = pitch |
|
pitchf = row[4] |
|
pitchf_padded[i, : pitchf.size(0)] = pitchf |
|
|
|
|
|
sid[i] = row[5] |
|
|
|
return ( |
|
phone_padded, |
|
phone_lengths, |
|
pitch_padded, |
|
pitchf_padded, |
|
spec_padded, |
|
spec_lengths, |
|
wave_padded, |
|
wave_lengths, |
|
|
|
sid, |
|
) |
|
|
|
|
|
class TextAudioLoader(torch.utils.data.Dataset): |
|
""" |
|
1) loads audio, text pairs |
|
2) normalizes text and converts them to sequences of integers |
|
3) computes spectrograms from audio files. |
|
""" |
|
|
|
def __init__(self, audiopaths_and_text, hparams): |
|
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) |
|
self.max_wav_value = hparams.max_wav_value |
|
self.sampling_rate = hparams.sampling_rate |
|
self.filter_length = hparams.filter_length |
|
self.hop_length = hparams.hop_length |
|
self.win_length = hparams.win_length |
|
self.sampling_rate = hparams.sampling_rate |
|
self.min_text_len = getattr(hparams, "min_text_len", 1) |
|
self.max_text_len = getattr(hparams, "max_text_len", 5000) |
|
self._filter() |
|
|
|
def _filter(self): |
|
""" |
|
Filter text & store spec lengths |
|
""" |
|
|
|
|
|
|
|
audiopaths_and_text_new = [] |
|
lengths = [] |
|
for audiopath, text, dv in self.audiopaths_and_text: |
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: |
|
audiopaths_and_text_new.append([audiopath, text, dv]) |
|
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) |
|
self.audiopaths_and_text = audiopaths_and_text_new |
|
self.lengths = lengths |
|
|
|
def get_sid(self, sid): |
|
sid = torch.LongTensor([int(sid)]) |
|
return sid |
|
|
|
def get_audio_text_pair(self, audiopath_and_text): |
|
|
|
file = audiopath_and_text[0] |
|
phone = audiopath_and_text[1] |
|
dv = audiopath_and_text[2] |
|
|
|
phone = self.get_labels(phone) |
|
spec, wav = self.get_audio(file) |
|
dv = self.get_sid(dv) |
|
|
|
len_phone = phone.size()[0] |
|
len_spec = spec.size()[-1] |
|
if len_phone != len_spec: |
|
len_min = min(len_phone, len_spec) |
|
len_wav = len_min * self.hop_length |
|
spec = spec[:, :len_min] |
|
wav = wav[:, :len_wav] |
|
phone = phone[:len_min, :] |
|
return (spec, wav, phone, dv) |
|
|
|
def get_labels(self, phone): |
|
phone = np.load(phone) |
|
phone = np.repeat(phone, 2, axis=0) |
|
n_num = min(phone.shape[0], 900) |
|
phone = phone[:n_num, :] |
|
phone = torch.FloatTensor(phone) |
|
return phone |
|
|
|
def get_audio(self, filename): |
|
audio, sampling_rate = load_wav_to_torch(filename) |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError( |
|
"{} SR doesn't match target {} SR".format( |
|
sampling_rate, self.sampling_rate |
|
) |
|
) |
|
audio_norm = audio |
|
|
|
|
|
|
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec_filename = filename.replace(".wav", ".spec.pt") |
|
if os.path.exists(spec_filename): |
|
try: |
|
spec = torch.load(spec_filename) |
|
except: |
|
print(spec_filename, traceback.format_exc()) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.sampling_rate, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) |
|
else: |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.sampling_rate, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) |
|
return spec, audio_norm |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio_text_pair(self.audiopaths_and_text[index]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths_and_text) |
|
|
|
|
|
class TextAudioCollate: |
|
"""Zero-pads model inputs and targets""" |
|
|
|
def __init__(self, return_ids=False): |
|
self.return_ids = return_ids |
|
|
|
def __call__(self, batch): |
|
"""Collate's training batch from normalized text and aduio |
|
PARAMS |
|
------ |
|
batch: [text_normalized, spec_normalized, wav_normalized] |
|
""" |
|
|
|
_, ids_sorted_decreasing = torch.sort( |
|
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True |
|
) |
|
|
|
max_spec_len = max([x[0].size(1) for x in batch]) |
|
max_wave_len = max([x[1].size(1) for x in batch]) |
|
spec_lengths = torch.LongTensor(len(batch)) |
|
wave_lengths = torch.LongTensor(len(batch)) |
|
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) |
|
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) |
|
spec_padded.zero_() |
|
wave_padded.zero_() |
|
|
|
max_phone_len = max([x[2].size(0) for x in batch]) |
|
phone_lengths = torch.LongTensor(len(batch)) |
|
phone_padded = torch.FloatTensor( |
|
len(batch), max_phone_len, batch[0][2].shape[1] |
|
) |
|
phone_padded.zero_() |
|
sid = torch.LongTensor(len(batch)) |
|
|
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
spec = row[0] |
|
spec_padded[i, :, : spec.size(1)] = spec |
|
spec_lengths[i] = spec.size(1) |
|
|
|
wave = row[1] |
|
wave_padded[i, :, : wave.size(1)] = wave |
|
wave_lengths[i] = wave.size(1) |
|
|
|
phone = row[2] |
|
phone_padded[i, : phone.size(0), :] = phone |
|
phone_lengths[i] = phone.size(0) |
|
|
|
sid[i] = row[3] |
|
|
|
return ( |
|
phone_padded, |
|
phone_lengths, |
|
spec_padded, |
|
spec_lengths, |
|
wave_padded, |
|
wave_lengths, |
|
sid, |
|
) |
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): |
|
""" |
|
Maintain similar input lengths in a batch. |
|
Length groups are specified by boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. |
|
|
|
It removes samples which are not included in the boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
batch_size, |
|
boundaries, |
|
num_replicas=None, |
|
rank=None, |
|
shuffle=True, |
|
): |
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) |
|
self.lengths = dataset.lengths |
|
self.batch_size = batch_size |
|
self.boundaries = boundaries |
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets() |
|
self.total_size = sum(self.num_samples_per_bucket) |
|
self.num_samples = self.total_size // self.num_replicas |
|
|
|
def _create_buckets(self): |
|
buckets = [[] for _ in range(len(self.boundaries) - 1)] |
|
for i in range(len(self.lengths)): |
|
length = self.lengths[i] |
|
idx_bucket = self._bisect(length) |
|
if idx_bucket != -1: |
|
buckets[idx_bucket].append(i) |
|
|
|
for i in range(len(buckets) - 1, -1, -1): |
|
if len(buckets[i]) == 0: |
|
buckets.pop(i) |
|
self.boundaries.pop(i + 1) |
|
|
|
num_samples_per_bucket = [] |
|
for i in range(len(buckets)): |
|
len_bucket = len(buckets[i]) |
|
total_batch_size = self.num_replicas * self.batch_size |
|
rem = ( |
|
total_batch_size - (len_bucket % total_batch_size) |
|
) % total_batch_size |
|
num_samples_per_bucket.append(len_bucket + rem) |
|
return buckets, num_samples_per_bucket |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
|
|
indices = [] |
|
if self.shuffle: |
|
for bucket in self.buckets: |
|
indices.append(torch.randperm(len(bucket), generator=g).tolist()) |
|
else: |
|
for bucket in self.buckets: |
|
indices.append(list(range(len(bucket)))) |
|
|
|
batches = [] |
|
for i in range(len(self.buckets)): |
|
bucket = self.buckets[i] |
|
len_bucket = len(bucket) |
|
ids_bucket = indices[i] |
|
num_samples_bucket = self.num_samples_per_bucket[i] |
|
|
|
|
|
rem = num_samples_bucket - len_bucket |
|
ids_bucket = ( |
|
ids_bucket |
|
+ ids_bucket * (rem // len_bucket) |
|
+ ids_bucket[: (rem % len_bucket)] |
|
) |
|
|
|
|
|
ids_bucket = ids_bucket[self.rank :: self.num_replicas] |
|
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size): |
|
batch = [ |
|
bucket[idx] |
|
for idx in ids_bucket[ |
|
j * self.batch_size : (j + 1) * self.batch_size |
|
] |
|
] |
|
batches.append(batch) |
|
|
|
if self.shuffle: |
|
batch_ids = torch.randperm(len(batches), generator=g).tolist() |
|
batches = [batches[i] for i in batch_ids] |
|
self.batches = batches |
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples |
|
return iter(self.batches) |
|
|
|
def _bisect(self, x, lo=0, hi=None): |
|
if hi is None: |
|
hi = len(self.boundaries) - 1 |
|
|
|
if hi > lo: |
|
mid = (hi + lo) // 2 |
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: |
|
return mid |
|
elif x <= self.boundaries[mid]: |
|
return self._bisect(x, lo, mid) |
|
else: |
|
return self._bisect(x, mid + 1, hi) |
|
else: |
|
return -1 |
|
|
|
def __len__(self): |
|
return self.num_samples // self.batch_size |
|
|