|
""" |
|
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个 |
|
""" |
|
import faiss, numpy as np, os |
|
|
|
|
|
inp_root = r"E:\codes\py39\dataset\mi\2-co256" |
|
npys = [] |
|
for name in sorted(list(os.listdir(inp_root))): |
|
phone = np.load("%s/%s" % (inp_root, name)) |
|
npys.append(phone) |
|
big_npy = np.concatenate(npys, 0) |
|
print(big_npy.shape) |
|
np.save("infer/big_src_feature_mi.npy", big_npy) |
|
|
|
|
|
|
|
print(big_npy.shape) |
|
index = faiss.index_factory(256, "IVF512,Flat") |
|
print("training") |
|
index_ivf = faiss.extract_index_ivf(index) |
|
index_ivf.nprobe = 9 |
|
index.train(big_npy) |
|
faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index") |
|
print("adding") |
|
index.add(big_npy) |
|
faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index") |
|
""" |
|
大小(都是FP32) |
|
big_src_feature 2.95G |
|
(3098036, 256) |
|
big_emb 4.43G |
|
(6196072, 192) |
|
big_emb双倍是因为求特征要repeat后再加pitch |
|
|
|
""" |
|
|