|
import os, sys, traceback |
|
|
|
|
|
n_part = int(sys.argv[2]) |
|
i_part = int(sys.argv[3]) |
|
if len(sys.argv) == 5: |
|
exp_dir = sys.argv[4] |
|
else: |
|
i_gpu = sys.argv[4] |
|
exp_dir = sys.argv[5] |
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu) |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import soundfile as sf |
|
import numpy as np |
|
from fairseq import checkpoint_utils |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
f = open("%s/extract_f0_feature.log" % exp_dir, "a+") |
|
|
|
|
|
def printt(strr): |
|
print(strr) |
|
f.write("%s\n" % strr) |
|
f.flush() |
|
|
|
|
|
printt(sys.argv) |
|
model_path = "hubert_base.pt" |
|
|
|
printt(exp_dir) |
|
wavPath = "%s/1_16k_wavs" % exp_dir |
|
outPath = "%s/3_feature256" % exp_dir |
|
os.makedirs(outPath, exist_ok=True) |
|
|
|
|
|
|
|
def readwave(wav_path, normalize=False): |
|
wav, sr = sf.read(wav_path) |
|
assert sr == 16000 |
|
feats = torch.from_numpy(wav).float() |
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
assert feats.dim() == 1, feats.dim() |
|
if normalize: |
|
with torch.no_grad(): |
|
feats = F.layer_norm(feats, feats.shape) |
|
feats = feats.view(1, -1) |
|
return feats |
|
|
|
|
|
|
|
printt("load model(s) from {}".format(model_path)) |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( |
|
[model_path], |
|
suffix="", |
|
) |
|
model = models[0] |
|
model = model.to(device) |
|
printt("move model to %s" % device) |
|
if device != "cpu": |
|
model = model.half() |
|
model.eval() |
|
|
|
todo = sorted(list(os.listdir(wavPath)))[i_part::n_part] |
|
n = max(1, len(todo) // 10) |
|
if len(todo) == 0: |
|
printt("no-feature-todo") |
|
else: |
|
printt("all-feature-%s" % len(todo)) |
|
for idx, file in enumerate(todo): |
|
try: |
|
if file.endswith(".wav"): |
|
wav_path = "%s/%s" % (wavPath, file) |
|
out_path = "%s/%s" % (outPath, file.replace("wav", "npy")) |
|
|
|
if os.path.exists(out_path): |
|
continue |
|
|
|
feats = readwave(wav_path, normalize=saved_cfg.task.normalize) |
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
inputs = { |
|
"source": feats.half().to(device) |
|
if device != "cpu" |
|
else feats.to(device), |
|
"padding_mask": padding_mask.to(device), |
|
"output_layer": 9, |
|
} |
|
with torch.no_grad(): |
|
logits = model.extract_features(**inputs) |
|
feats = model.final_proj(logits[0]) |
|
|
|
feats = feats.squeeze(0).float().cpu().numpy() |
|
if np.isnan(feats).sum() == 0: |
|
np.save(out_path, feats, allow_pickle=False) |
|
else: |
|
printt("%s-contains nan" % file) |
|
if idx % n == 0: |
|
printt("now-%s,all-%s,%s,%s" % (len(todo), idx, file, feats.shape)) |
|
except: |
|
printt(traceback.format_exc()) |
|
printt("all-feature-done") |
|
|