File size: 4,250 Bytes
ef99749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import sys, os, multiprocessing
from scipy import signal

now_dir = os.getcwd()
sys.path.append(now_dir)

inp_root = sys.argv[1]
sr = int(sys.argv[2])
n_p = int(sys.argv[3])
exp_dir = sys.argv[4]
noparallel = sys.argv[5] == "True"
import numpy as np, os, traceback
from slicer2 import Slicer
import librosa, traceback
from scipy.io import wavfile
import multiprocessing
from my_utils import load_audio

mutex = multiprocessing.Lock()
f = open("%s/preprocess.log" % exp_dir, "a+")


def println(strr):
    mutex.acquire()
    print(strr)
    f.write("%s\n" % strr)
    f.flush()
    mutex.release()


class PreProcess:
    def __init__(self, sr, exp_dir):
        self.slicer = Slicer(
            sr=sr,
            threshold=-40,
            min_length=800,
            min_interval=400,
            hop_size=15,
            max_sil_kept=150,
        )
        self.sr = sr
        self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
        self.per = 3.7
        self.overlap = 0.3
        self.tail = self.per + self.overlap
        self.max = 0.95
        self.alpha = 0.8
        self.exp_dir = exp_dir
        self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
        self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
        os.makedirs(self.exp_dir, exist_ok=True)
        os.makedirs(self.gt_wavs_dir, exist_ok=True)
        os.makedirs(self.wavs16k_dir, exist_ok=True)

    def norm_write(self, tmp_audio, idx0, idx1):
        tmp_audio = (tmp_audio / np.abs(tmp_audio).max() * (self.max * self.alpha)) + (
            1 - self.alpha
        ) * tmp_audio
        wavfile.write(
            "%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
            self.sr,
            tmp_audio.astype(np.float32),
        )
        tmp_audio = librosa.resample(
            tmp_audio, orig_sr=self.sr, target_sr=16000
        )  # , res_type="soxr_vhq"
        wavfile.write(
            "%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
            16000,
            tmp_audio.astype(np.float32),
        )

    def pipeline(self, path, idx0):
        try:
            audio = load_audio(path, self.sr)
            # zero phased digital filter cause pre-ringing noise...
            # audio = signal.filtfilt(self.bh, self.ah, audio)
            audio = signal.lfilter(self.bh, self.ah, audio)

            idx1 = 0
            for audio in self.slicer.slice(audio):
                i = 0
                while 1:
                    start = int(self.sr * (self.per - self.overlap) * i)
                    i += 1
                    if len(audio[start:]) > self.tail * self.sr:
                        tmp_audio = audio[start : start + int(self.per * self.sr)]
                        self.norm_write(tmp_audio, idx0, idx1)
                        idx1 += 1
                    else:
                        tmp_audio = audio[start:]
                        idx1 += 1
                        break
                self.norm_write(tmp_audio, idx0, idx1)
            println("%s->Suc." % path)
        except:
            println("%s->%s" % (path, traceback.format_exc()))

    def pipeline_mp(self, infos):
        for path, idx0 in infos:
            self.pipeline(path, idx0)

    def pipeline_mp_inp_dir(self, inp_root, n_p):
        try:
            infos = [
                ("%s/%s" % (inp_root, name), idx)
                for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
            ]
            if noparallel:
                for i in range(n_p):
                    self.pipeline_mp(infos[i::n_p])
            else:
                ps = []
                for i in range(n_p):
                    p = multiprocessing.Process(
                        target=self.pipeline_mp, args=(infos[i::n_p],)
                    )
                    p.start()
                    ps.append(p)
                    for p in ps:
                        p.join()
        except:
            println("Fail. %s" % traceback.format_exc())


def preprocess_trainset(inp_root, sr, n_p, exp_dir):
    pp = PreProcess(sr, exp_dir)
    println("start preprocess")
    println(sys.argv)
    pp.pipeline_mp_inp_dir(inp_root, n_p)
    println("end preprocess")


if __name__ == "__main__":
    preprocess_trainset(inp_root, sr, n_p, exp_dir)