File size: 21,696 Bytes
ef99749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import numpy as np
from joblib import Parallel, delayed
import librosa
from scipy.signal import filtfilt
import scipy
import tempfile
from tqdm.auto import tqdm

def sigmoid(x, shift, mult):
    """
    Using this sigmoid to discourage one network overpowering the other
    """
    return 1 / (1 + np.exp(-(x + shift) * mult))


def get_time_smoothed_representation(
    spectral, samplerate, hop_length, time_constant_s=0.001
):
    t_frames = time_constant_s * samplerate / float(hop_length)
    # By default, this solves the equation for b:
    #   b**2  + (1 - b) / t_frames  - 2 = 0
    # which approximates the full-width half-max of the
    # squared frequency response of the IIR low-pass filt
    b = (np.sqrt(1 + 4 * t_frames ** 2) - 1) / (2 * t_frames ** 2)
    return filtfilt([b], [1, b - 1], spectral, axis=-1, padtype=None)


def _smoothing_filter(n_grad_freq, n_grad_time):
    """Generates a filter to smooth the mask for the spectrogram

    Arguments:
        n_grad_freq {[type]} -- [how many frequency channels to smooth over with the mask.]
        n_grad_time {[type]} -- [how many time channels to smooth over with the mask.]
    """
    smoothing_filter = np.outer(
        np.concatenate(
            [
                np.linspace(0, 1, n_grad_freq + 1, endpoint=False),
                np.linspace(1, 0, n_grad_freq + 2),
            ]
        )[1:-1],
        np.concatenate(
            [
                np.linspace(0, 1, n_grad_time + 1, endpoint=False),
                np.linspace(1, 0, n_grad_time + 2),
            ]
        )[1:-1],
    )
    smoothing_filter = smoothing_filter / np.sum(smoothing_filter)
    return smoothing_filter

class SpectralGate:
    def __init__(
        self,
        y,  
        sr,  
        prop_decrease,
        chunk_size,
        padding,
        n_fft,
        win_length,
        hop_length,
        time_constant_s,
        freq_mask_smooth_hz,
        time_mask_smooth_ms,
        tmp_folder,
        use_tqdm,
        n_jobs
    ):
        self.sr = sr
        # if this is a 1D single channel recording
        self.flat = False

        y = np.array(y)
        # reshape data to (#channels, #frames)
        if len(y.shape) == 1:
            self.y = np.expand_dims(y, 0)
            self.flat = True
        elif len(y.shape) > 2:
            raise ValueError("Waveform must be in shape (# frames, # channels)")
        else:
            self.y = y

        self._dtype = y.dtype
        # get the number of channels and frames in data
        self.n_channels, self.n_frames = self.y.shape
        self._chunk_size = chunk_size
        self.padding = padding
        self.n_jobs = n_jobs

        self.use_tqdm = use_tqdm
        # where to create a temp file for parallel
        # writing
        self._tmp_folder = tmp_folder

        ### Parameters for spectral gating
        self._n_fft = n_fft
        # set window and hop length for stft
        if win_length is None:
            self._win_length = self._n_fft
        else:
            self._win_length = win_length
        if hop_length is None:
            self._hop_length = self._win_length // 4
        else:
            self._hop_length = hop_length
        
        self._time_constant_s = time_constant_s

        self._prop_decrease = prop_decrease

        if (freq_mask_smooth_hz is None) & (time_mask_smooth_ms is None):
            self.smooth_mask = False
        else:
            self._generate_mask_smoothing_filter(freq_mask_smooth_hz, time_mask_smooth_ms)

    def _generate_mask_smoothing_filter(self, freq_mask_smooth_hz, time_mask_smooth_ms):

        if freq_mask_smooth_hz is None:
            n_grad_freq = 1
        else:
            # filter to smooth the mask
            n_grad_freq = int(freq_mask_smooth_hz / (self.sr / (self._n_fft / 2)))
            if n_grad_freq < 1:
                raise ValueError(
                    "freq_mask_smooth_hz needs to be at least {}Hz".format(
                        int((self.sr / (self._n_fft / 2)))
                    )
                )

        if time_mask_smooth_ms is None:
            n_grad_time = 1
        else:
            n_grad_time = int(time_mask_smooth_ms / ((self._hop_length / self.sr) * 1000))
            if n_grad_time < 1:
                raise ValueError(
                    "time_mask_smooth_ms needs to be at least {}ms".format(
                        int((self._hop_length / self.sr) * 1000)
                    )
                )
        if (n_grad_time == 1) & (n_grad_freq == 1):
            self.smooth_mask = False
        else:
            self.smooth_mask = True
            self._smoothing_filter = _smoothing_filter(n_grad_freq, n_grad_time)

    def _read_chunk(self, i1, i2):
        """read chunk and pad with zerros"""
        if i1 < 0:
            i1b = 0
        else:
            i1b = i1
        if i2 > self.n_frames:
            i2b = self.n_frames
        else:
            i2b = i2
        chunk = np.zeros((self.n_channels, i2 - i1))
        chunk[:, i1b - i1 : i2b - i1] = self.y[:, i1b:i2b]
        return chunk

    def filter_chunk(self, start_frame, end_frame):
        """Pad and perform filtering"""
        i1 = start_frame - self.padding
        i2 = end_frame + self.padding
        padded_chunk = self._read_chunk(i1, i2)
        filtered_padded_chunk = self._do_filter(padded_chunk)
        return filtered_padded_chunk[:, start_frame - i1 : end_frame - i1]

    def _get_filtered_chunk(self, ind):
        """Grabs a single chunk"""
        start0 = ind * self._chunk_size
        end0 = (ind + 1) * self._chunk_size
        return self.filter_chunk(start_frame=start0, end_frame=end0)

    def _do_filter(self, chunk):
        """Do the actual filtering"""
        raise NotImplementedError

        return chunk_filtered

    def _iterate_chunk(self, filtered_chunk, pos, end0, start0, ich):
        filtered_chunk0 = self._get_filtered_chunk(ich)
        filtered_chunk[:, pos : pos + end0 - start0] = filtered_chunk0[:, start0:end0]
        pos += end0 - start0

    def get_traces(self, start_frame=None, end_frame=None):
        """Grab filtered data iterating over chunks"""
        if start_frame is None:
            start_frame = 0
        if end_frame is None:
            end_frame = self.n_frames

        if self._chunk_size is not None:
            if end_frame - start_frame > self._chunk_size:
                ich1 = int(start_frame / self._chunk_size)
                ich2 = int((end_frame - 1) / self._chunk_size)
                
                # write output to temp memmap for parallelization
                with tempfile.NamedTemporaryFile(prefix=self._tmp_folder) as fp:
                    # create temp file
                    filtered_chunk = np.memmap(
                        fp,
                        dtype=self._dtype,
                        shape=(self.n_channels, int(end_frame - start_frame)),
                        mode="w+",
                    )
                    pos_list = []
                    start_list = []
                    end_list = []
                    pos = 0
                    for ich in range(ich1, ich2 + 1):
                        if ich == ich1:
                            start0 = start_frame - ich * self._chunk_size
                        else:
                            start0 = 0
                        if ich == ich2:
                            end0 = end_frame - ich * self._chunk_size
                        else:
                            end0 = self._chunk_size
                        pos_list.append(pos)
                        start_list.append(start0)
                        end_list.append(end0)
                        pos += end0 - start0
                    
                    Parallel(n_jobs=self.n_jobs)(delayed(self._iterate_chunk)(filtered_chunk, pos, end0, start0, ich)
                       for pos, start0, end0, ich in zip(
                        tqdm(pos_list, disable=not(self.use_tqdm)), start_list, end_list, range(ich1, ich2 + 1)
                    )
                   )
                    if self.flat:
                        return filtered_chunk.astype(self._dtype).flatten()
                    else:
                        return filtered_chunk.astype(self._dtype)

        filtered_chunk = self.filter_chunk(start_frame=0, end_frame=end_frame)
        if self.flat:
            return filtered_chunk.astype(self._dtype).flatten()
        else:
            return filtered_chunk.astype(self._dtype)


class SpectralGateNonStationary(SpectralGate):
    def __init__(
        self,
        y, 
        sr,  
        chunk_size,
        padding,
        n_fft,
        win_length,
        hop_length,
        time_constant_s,
        freq_mask_smooth_hz,
        time_mask_smooth_ms,
        thresh_n_mult_nonstationary,
        sigmoid_slope_nonstationary,
        tmp_folder,
        prop_decrease,
        use_tqdm,
        n_jobs
    ):
        
        self._thresh_n_mult_nonstationary = thresh_n_mult_nonstationary
        self._sigmoid_slope_nonstationary = sigmoid_slope_nonstationary

        super().__init__(
            y=y, 
            sr=sr,  
            chunk_size=chunk_size,
            padding=padding,
            n_fft=n_fft,
            win_length=win_length,
            hop_length=hop_length,
            time_constant_s=time_constant_s,
            freq_mask_smooth_hz=freq_mask_smooth_hz,
            time_mask_smooth_ms=time_mask_smooth_ms,
            tmp_folder=tmp_folder,
            prop_decrease=prop_decrease,
            use_tqdm=use_tqdm,
            n_jobs = n_jobs
        )


    def spectral_gating_nonstationary(self, chunk):
        """non-stationary version of spectral gating"""
        denoised_channels = np.zeros(chunk.shape, chunk.dtype)
        for ci, channel in enumerate(chunk):
            sig_stft = librosa.stft(
                (channel),
                n_fft=self._n_fft,
                hop_length=self._hop_length,
                win_length=self._win_length,
            )
            # get abs of signal stft
            abs_sig_stft = np.abs(sig_stft)

            # get the smoothed mean of the signal
            sig_stft_smooth = get_time_smoothed_representation(
                abs_sig_stft,
                self.sr,
                self._hop_length,
                time_constant_s=self._time_constant_s,
            )

            # get the number of X above the mean the signal is
            sig_mult_above_thresh = (abs_sig_stft - sig_stft_smooth) / sig_stft_smooth
            # mask based on sigmoid
            sig_mask = sigmoid(
                sig_mult_above_thresh, -self._thresh_n_mult_nonstationary, self._sigmoid_slope_nonstationary
            )

            if self.smooth_mask:
                # convolve the mask with a smoothing filter
                sig_mask = scipy.signal.fftconvolve(
                    sig_mask, self._smoothing_filter, mode="same"
                )
            
            sig_mask = sig_mask * self._prop_decrease + np.ones(np.shape(sig_mask)) * (1.0 - self._prop_decrease)


            # multiply signal with mask
            sig_stft_denoised = sig_stft * sig_mask


            # invert/recover the signal
            denoised_signal = librosa.istft(
                sig_stft_denoised,
                hop_length=self._hop_length,
                win_length=self._win_length,
            )
            denoised_channels[ci, : len(denoised_signal)] = denoised_signal
        return denoised_channels

    def _do_filter(self, chunk):
        """Do the actual filtering"""
        chunk_filtered = self.spectral_gating_nonstationary(chunk)

        return chunk_filtered


class SpectralGateStationary(SpectralGate):
    def __init__(
        self,
        y, 
        sr,  
        y_noise,
        n_std_thresh_stationary,
        chunk_size,
        clip_noise_stationary,
        padding,
        n_fft,
        win_length,
        hop_length,
        time_constant_s,
        freq_mask_smooth_hz,
        time_mask_smooth_ms,
        tmp_folder,
        prop_decrease,
        use_tqdm,
        n_jobs
    ):

        super().__init__(
            y=y, 
            sr=sr,  
            chunk_size=chunk_size,
            padding=padding,
            n_fft=n_fft,
            win_length=win_length,
            hop_length=hop_length,
            time_constant_s=time_constant_s,
            freq_mask_smooth_hz=freq_mask_smooth_hz,
            time_mask_smooth_ms=time_mask_smooth_ms,
            tmp_folder=tmp_folder,
            prop_decrease=prop_decrease,
            use_tqdm=use_tqdm,
            n_jobs = n_jobs
        )

        self.n_std_thresh_stationary = n_std_thresh_stationary

        if y_noise is None:
            self.y_noise = self.y

        else:
            y_noise = np.array(y_noise)
            # reshape data to (#channels, #frames)
            if len(y_noise.shape) == 1:
                self.y_noise = np.expand_dims(y_noise, 0)
            elif len(y.shape) > 2:
                raise ValueError("Waveform must be in shape (# frames, # channels)")
            else:
                self.y_noise = y_noise
        
        # collapse y_noise to one channel
        self.y_noise = np.mean(self.y_noise, axis=0)

        if clip_noise_stationary:
            self.y_noise = self.y_noise[:chunk_size]

        # calculate statistics over y_noise
        abs_noise_stft = np.abs(librosa.stft(
                (self.y_noise),
                n_fft=self._n_fft,
                hop_length=self._hop_length,
                win_length=self._win_length,
            ))
        noise_stft_db = _amp_to_db(abs_noise_stft) 
        self.mean_freq_noise = np.mean(noise_stft_db, axis=1)
        self.std_freq_noise = np.std(noise_stft_db, axis=1)

        self.noise_thresh = self.mean_freq_noise + self.std_freq_noise * self.n_std_thresh_stationary

    def spectral_gating_stationary(self, chunk):
        """non-stationary version of spectral gating"""
        denoised_channels = np.zeros(chunk.shape, chunk.dtype)
        for ci, channel in enumerate(chunk):
            sig_stft = librosa.stft(
                (channel),
                n_fft=self._n_fft,
                hop_length=self._hop_length,
                win_length=self._win_length,
            )
            
            # spectrogram of signal in dB
            sig_stft_db = _amp_to_db(np.abs(sig_stft))

            # calculate the threshold for each frequency/time bin
            db_thresh = np.repeat(
                np.reshape(self.noise_thresh, [1, len(self.mean_freq_noise)]),
                np.shape(sig_stft_db)[1],
                axis=0,
            ).T

            # mask if the signal is above the threshold
            sig_mask = sig_stft_db > db_thresh

            sig_mask = sig_mask * self._prop_decrease + np.ones(np.shape(sig_mask)) * (1.0 - self._prop_decrease)

            if self.smooth_mask:
                # convolve the mask with a smoothing filter
                sig_mask = scipy.signal.fftconvolve(
                    sig_mask, self._smoothing_filter, mode="same"
                )

            # multiply signal with mask
            sig_stft_denoised = sig_stft * sig_mask

            # invert/recover the signal
            denoised_signal = librosa.istft(
                sig_stft_denoised,
                hop_length=self._hop_length,
                win_length=self._win_length,
            )
            denoised_channels[ci, : len(denoised_signal)] = denoised_signal
        return denoised_channels

    def _do_filter(self, chunk):
        """Do the actual filtering"""
        chunk_filtered = self.spectral_gating_stationary(chunk)

        return chunk_filtered



def reduce_noise(
    y, 
    sr, 
    stationary=False,
    y_noise = None,
    prop_decrease = 1.0,
    time_constant_s=2.0,
    freq_mask_smooth_hz=500,
    time_mask_smooth_ms=50,
    thresh_n_mult_nonstationary=2,
    sigmoid_slope_nonstationary=10,
    n_std_thresh_stationary = 1.5,
    tmp_folder=None,
    chunk_size=600000,
    padding=30000,
    n_fft=1024,
    win_length=None,
    hop_length=None,
    clip_noise_stationary = True,
    use_tqdm=False,
    n_jobs = 1
):
    """
    Reduce noise via spectral gating.

    Parameters
    ----------
    y : np.ndarray [shape=(# frames,) or (# channels, # frames)], real-valued
        input signal
    sr : int
        sample rate of input signal / noise signal
    y_noise : np.ndarray [shape=(# frames,) or (# channels, # frames)], real-valued
        noise signal to compute statistics over (only for non-stationary noise reduction).
    stationary : bool, optional
        Whether to perform stationary, or non-stationary noise reduction, by default False
    prop_decrease : float, optional
        The proportion to reduce the noise by (1.0 = 100%), by default 1.0
    time_constant_s : float, optional
        The time constant, in seconds, to compute the noise floor in the non-stationary
        algorithm, by default 2.0
    freq_mask_smooth_hz : int, optional
        The frequency range to smooth the mask over in Hz, by default 500
    time_mask_smooth_ms : int, optional
        The time range to smooth the mask over in milliseconds, by default 50
    thresh_n_mult_nonstationary : int, optional
        Only used in nonstationary noise reduction., by default 1
    sigmoid_slope_nonstationary : int, optional
        Only used in nonstationary noise reduction., by default 10
    n_std_thresh_stationary : int, optional
        Number of standard deviations above mean to place the threshold between
        signal and noise., by default 1.5
    tmp_folder : [type], optional
        Temp folder to write waveform to during parallel processing. Defaults to 
        default temp folder for python., by default None
    chunk_size : int, optional
        Size of signal chunks to reduce noise over. Larger sizes
        will take more space in memory, smaller sizes can take longer to compute.
        , by default 60000
        padding : int, optional
        How much to pad each chunk of signal by. Larger pads are
        needed for larger time constants., by default 30000
    n_fft : int, optional
        length of the windowed signal after padding with zeros.
        The number of rows in the STFT matrix ``D`` is ``(1 + n_fft/2)``.
        The default value, ``n_fft=2048`` samples, corresponds to a physical
        duration of 93 milliseconds at a sample rate of 22050 Hz, i.e. the
        default sample rate in librosa. This value is well adapted for music
        signals. However, in speech processing, the recommended value is 512,
        corresponding to 23 milliseconds at a sample rate of 22050 Hz.
        In any case, we recommend setting ``n_fft`` to a power of two for
        optimizing the speed of the fast Fourier transform (FFT) algorithm., by default 1024
    win_length : [type], optional
        Each frame of audio is windowed by ``window`` of length ``win_length``
        and then padded with zeros to match ``n_fft``.
        Smaller values improve the temporal resolution of the STFT (i.e. the
        ability to discriminate impulses that are closely spaced in time)
        at the expense of frequency resolution (i.e. the ability to discriminate
        pure tones that are closely spaced in frequency). This effect is known
        as the time-frequency localization trade-off and needs to be adjusted
        according to the properties of the input signal ``y``.
        If unspecified, defaults to ``win_length = n_fft``., by default None
    hop_length : [type], optional
        number of audio samples between adjacent STFT columns.
        Smaller values increase the number of columns in ``D`` without
        affecting the frequency resolution of the STFT.
        If unspecified, defaults to ``win_length // 4`` (see below)., by default None
    use_tqdm : bool, optional
        Whether to show tqdm progress bar, by default False
    n_jobs : int, optional
        Number of parallel jobs to run. Set at -1 to use all CPU cores, by default 1
    """
    if stationary:
        sg = SpectralGateStationary(
            y=y, 
            sr=sr, 
            y_noise = y_noise,
            prop_decrease =prop_decrease,
            n_std_thresh_stationary = n_std_thresh_stationary,
            chunk_size=chunk_size,
            clip_noise_stationary = clip_noise_stationary,
            padding=padding,
            n_fft=n_fft,
            win_length=win_length,
            hop_length=hop_length,
            time_constant_s=time_constant_s,
            freq_mask_smooth_hz=freq_mask_smooth_hz,
            time_mask_smooth_ms=time_mask_smooth_ms,
            tmp_folder=tmp_folder,
            use_tqdm=use_tqdm,
            n_jobs = n_jobs
        )

    else:
        sg = SpectralGateNonStationary(
            y=y, 
            sr=sr, 
            chunk_size=chunk_size,
            padding=padding,
            prop_decrease =prop_decrease,
            n_fft=n_fft,
            win_length=win_length,
            hop_length=hop_length,
            time_constant_s=time_constant_s,
            freq_mask_smooth_hz=freq_mask_smooth_hz,
            time_mask_smooth_ms=time_mask_smooth_ms,
            thresh_n_mult_nonstationary=thresh_n_mult_nonstationary,
            sigmoid_slope_nonstationary=sigmoid_slope_nonstationary,
            tmp_folder=tmp_folder,
            use_tqdm=use_tqdm,
            n_jobs = n_jobs
        )
    return sg.get_traces()

def _amp_to_db(x):
    return librosa.core.amplitude_to_db(x, ref=1.0, amin=1e-20, top_db=80.0)


def _db_to_amp(x,):
    return librosa.core.db_to_amplitude(x, ref=1.0)