File size: 5,261 Bytes
ef99749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os, traceback, sys, parselmouth
import librosa
import pyworld
from scipy.io import wavfile
import numpy as np, logging

logging.getLogger("numba").setLevel(logging.WARNING)
from multiprocessing import Process

exp_dir = sys.argv[1]
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")


def printt(strr):
    print(strr)
    f.write("%s\n" % strr)
    f.flush()


n_p = int(sys.argv[2])
f0method = sys.argv[3]


class FeatureInput(object):
    def __init__(self, samplerate=16000, hop_size=160):
        self.fs = samplerate
        self.hop = hop_size

        self.f0_bin = 256
        self.f0_max = 1100.0
        self.f0_min = 50.0
        self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
        self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)

    def compute_f0(self, path, f0_method):
        # default resample type of librosa.resample is "soxr_hq".
        # Quality: soxr_vhq > soxr_hq
        x, sr = librosa.load(path, self.fs)  # , res_type='soxr_vhq'
        p_len = x.shape[0] // self.hop
        assert sr == self.fs
        if f0_method == "pm":
            time_step = 160 / 16000 * 1000
            f0_min = 50
            f0_max = 1100
            f0 = (
                parselmouth.Sound(x, sr)
                .to_pitch_ac(
                    time_step=time_step / 1000,
                    voicing_threshold=0.6,
                    pitch_floor=f0_min,
                    pitch_ceiling=f0_max,
                )
                .selected_array["frequency"]
            )
            pad_size = (p_len - len(f0) + 1) // 2
            if pad_size > 0 or p_len - len(f0) - pad_size > 0:
                f0 = np.pad(
                    f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
                )
        elif f0_method == "harvest":
            f0, t = pyworld.harvest(
                x.astype(np.double),
                fs=sr,
                f0_ceil=self.f0_max,
                f0_floor=self.f0_min,
                frame_period=1000 * self.hop / sr,
            )
            f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
        elif f0_method == "dio":
            f0, t = pyworld.dio(
                x.astype(np.double),
                fs=sr,
                f0_ceil=self.f0_max,
                f0_floor=self.f0_min,
                frame_period=1000 * self.hop / sr,
            )
            f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
        return f0

    def coarse_f0(self, f0):
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
            self.f0_bin - 2
        ) / (self.f0_mel_max - self.f0_mel_min) + 1

        # use 0 or 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
        f0_coarse = np.rint(f0_mel).astype(np.int)
        assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
            f0_coarse.max(),
            f0_coarse.min(),
        )
        return f0_coarse

    def go(self, paths, f0_method):
        if len(paths) == 0:
            printt("no-f0-todo")
        else:
            printt("todo-f0-%s" % len(paths))
            n = max(len(paths) // 5, 1)  # 每个进程最多打印5条
            for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
                try:
                    if idx % n == 0:
                        printt("f0ing,now-%s,all-%s,-%s" % (idx, len(paths), inp_path))
                    if (
                        os.path.exists(opt_path1 + ".npy") == True
                        and os.path.exists(opt_path2 + ".npy") == True
                    ):
                        continue
                    featur_pit = self.compute_f0(inp_path, f0_method)
                    np.save(
                        opt_path2,
                        featur_pit,
                        allow_pickle=False,
                    )  # nsf
                    coarse_pit = self.coarse_f0(featur_pit)
                    np.save(
                        opt_path1,
                        coarse_pit,
                        allow_pickle=False,
                    )  # ori
                except:
                    printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()))


if __name__ == "__main__":
    # exp_dir=r"E:\codes\py39\dataset\mi-test"
    # n_p=16
    # f = open("%s/log_extract_f0.log"%exp_dir, "w")
    printt(sys.argv)
    featureInput = FeatureInput()
    paths = []
    inp_root = "%s/1_16k_wavs" % (exp_dir)
    opt_root1 = "%s/2a_f0" % (exp_dir)
    opt_root2 = "%s/2b-f0nsf" % (exp_dir)

    os.makedirs(opt_root1, exist_ok=True)
    os.makedirs(opt_root2, exist_ok=True)
    for name in sorted(list(os.listdir(inp_root))):
        inp_path = "%s/%s" % (inp_root, name)
        if "spec" in inp_path:
            continue
        opt_path1 = "%s/%s" % (opt_root1, name)
        opt_path2 = "%s/%s" % (opt_root2, name)
        paths.append([inp_path, opt_path1, opt_path2])

    ps = []
    for i in range(n_p):
        p = Process(
            target=featureInput.go,
            args=(
                paths[i::n_p],
                f0method,
            ),
        )
        p.start()
        ps.append(p)
    for p in ps:
        p.join()