File size: 15,797 Bytes
ef99749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2630ece
ef99749
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from multiprocessing import cpu_count
import threading, pdb, librosa
from time import sleep
from subprocess import Popen
from time import sleep
import torch, os, traceback, sys, warnings, shutil, numpy as np
import faiss
from random import shuffle
import scipy.io.wavfile as wavfile
now_dir = os.getcwd()
sys.path.append(now_dir)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs("audios",exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from i18n import I18nAuto
import ffmpeg


i18n = I18nAuto()
# 判断是否有能用来训练和加速推理的N卡
ncpu = cpu_count()
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if (not torch.cuda.is_available()) or ngpu == 0:
    if_gpu_ok = False
else:
    if_gpu_ok = False
    for i in range(ngpu):
        gpu_name = torch.cuda.get_device_name(i)
        if (
            "10" in gpu_name
            or "16" in gpu_name
            or "20" in gpu_name
            or "30" in gpu_name
            or "40" in gpu_name
            or "A2" in gpu_name.upper()
            or "A3" in gpu_name.upper()
            or "A4" in gpu_name.upper()
            or "P4" in gpu_name.upper()
            or "A50" in gpu_name.upper()
            or "70" in gpu_name
            or "80" in gpu_name
            or "90" in gpu_name
            or "M4" in gpu_name.upper()
            or "T4" in gpu_name.upper()
            or "TITAN" in gpu_name.upper()
        ):  # A10#A100#V100#A40#P40#M40#K80#A4500
            if_gpu_ok = True  # 至少有一张能用的N卡
            gpu_infos.append("%s\t%s" % (i, gpu_name))
            mem.append(
                int(
                    torch.cuda.get_device_properties(i).total_memory
                    / 1024
                    / 1024
                    / 1024
                    + 0.4
                )
            )
if if_gpu_ok == True and len(gpu_infos) > 0:
    gpu_info = "\n".join(gpu_infos)
    default_batch_size = min(mem) // 2
else:
    gpu_info = "很遗憾您这没有能用的显卡来支持您训练"
    default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from scipy.io import wavfile
from fairseq import checkpoint_utils
import gradio as gr
import logging
from vc_infer_pipeline import VC
from config import (
    is_half,
    device,
    python_cmd,
    listen_port,
    iscolab,
    noparallel,
    noautoopen,
)
from infer_uvr5 import _audio_pre_
from my_utils import load_audio
from train.process_ckpt import show_info, change_info, merge, extract_small_model

# from trainset_preprocess_pipeline import PreProcess
logging.getLogger("numba").setLevel(logging.WARNING)


class ToolButton(gr.Button, gr.components.FormComponent):
    """Small button with single emoji as text, fits inside gradio forms"""

    def __init__(self, **kwargs):
        super().__init__(variant="tool", **kwargs)

    def get_block_name(self):
        return "button"


hubert_model = None


def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(device)
    if is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()


weight_root = "weights"
weight_uvr5_root = "uvr5_weights"
names = []
for name in os.listdir(weight_root):
    if name.endswith(".pth"):
        names.append(name)
        
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
    if name.endswith(".pth"):
        uvr5_names.append(name.replace(".pth", ""))

def find_parent(search_dir, file_name):
    for dirpath, dirnames, filenames in os.walk(search_dir):
        if file_name in filenames:
            return os.path.abspath(dirpath)
    return None

def vc_single(
    sid,
    input_audio,
    f0_up_key,
    f0_file,
    f0_method,
    file_index,
    # file_big_npy,
    index_rate,
):  # spk_item, input_audio0, vc_transform0,f0_file,f0method0
    global tgt_sr, net_g, vc, hubert_model
    if input_audio is None:
        return "You need to upload an audio", None
    f0_up_key = int(f0_up_key)
    try:
        parent_dir = find_parent(".",input_audio)
        audio = load_audio(parent_dir+'/'+input_audio, 16000)
        times = [0, 0, 0]
        if hubert_model == None:
            load_hubert()
        if_f0 = cpt.get("f0", 1)
        file_index = (
            file_index.strip(" ")
            .strip('"')
            .strip("\n")
            .strip('"')
            .strip(" ")
            .replace("trained", "added")
        )  # 防止小白写错,自动帮他替换掉
        # file_big_npy = (
        #     file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        # )
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            sid,
            audio,
            times,
            f0_up_key,
            f0_method,
            file_index,
            # file_big_npy,
            index_rate,
            if_f0,
            f0_file=f0_file,
        )
        print(
            "npy: ", times[0], "s, f0: ", times[1], "s, infer: ", times[2], "s", sep=""
        )
        return "Success", (tgt_sr, audio_opt)
    except:
        info = traceback.format_exc()
        print(info)
        return info, (None, None)


def vc_multi(
    sid,
    dir_path,
    opt_root,
    paths,
    f0_up_key,
    f0_method,
    file_index,
    # file_big_npy,
    index_rate,
):
    try:
        dir_path = (
            dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        )  # 防止小白拷路径头尾带了空格和"和回车
        opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        os.makedirs(opt_root, exist_ok=True)
        try:
            if dir_path != "":
                paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
            else:
                paths = [path.name for path in paths]
        except:
            traceback.print_exc()
            paths = [path.name for path in paths]
        infos = []
        file_index = (
            file_index.strip(" ")
            .strip('"')
            .strip("\n")
            .strip('"')
            .strip(" ")
            .replace("trained", "added")
        )  # 防止小白写错,自动帮他替换掉
        for path in paths:
            info, opt = vc_single(
                sid,
                path,
                f0_up_key,
                None,
                f0_method,
                file_index,
                # file_big_npy,
                index_rate,
            )
            if info == "Success":
                try:
                    tgt_sr, audio_opt = opt
                    wavfile.write(
                        "%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt
                    )
                except:
                    info = traceback.format_exc()
            infos.append("%s->%s" % (os.path.basename(path), info))
            yield "\n".join(infos)
        yield "\n".join(infos)
    except:
        yield traceback.format_exc()

# 一个选项卡全局只能有一个音色
def get_vc(sid):
    global n_spk, tgt_sr, net_g, vc, cpt
    if sid == []:
        global hubert_model
        if hubert_model != None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            ###楼下不这么折腾清理不干净
            if_f0 = cpt.get("f0", 1)
            if if_f0 == 1:
                net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
            else:
                net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            cpt = None
        return {"visible": False, "__type__": "update"}
    person = "%s/%s" % (weight_root, sid)
    print("loading %s" % person)
    cpt = torch.load(person, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    if if_f0 == 1:
        net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
    else:
        net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))  # 不加这一行清不干净, 真奇葩
    net_g.eval().to(device)
    if is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, device, is_half)
    n_spk = cpt["config"][-3]
    return {"visible": False, "maximum": n_spk, "__type__": "update"}


def change_choices():
    names = []
    for name in os.listdir(weight_root):
        if name.endswith(".pth"):
            names.append(name)
    return {"choices": sorted(names), "__type__": "update"}

def change_choices2():
    audio_files = []
    for dirpath, dirnames, filenames in os.walk("."):
        for filename in filenames:
            if filename.endswith(('.wav', '.mp3')) and filename not in ('mute.wav', 'mute32k.wav', 'mute40k.wav', 'mute48k.wav', 'audio.wav'):
                if "tmp" not in filename:
                    audio_files.append(filename)
    return {"choices": sorted(audio_files), "__type__": "update"}

def clean():
    return {"value": "", "__type__": "update"}

def change_sr2(sr2, if_f0_3):
    if if_f0_3 == "是":
        return "pretrained/f0G%s.pth" % sr2, "pretrained/f0D%s.pth" % sr2
    else:
        return "pretrained/G%s.pth" % sr2, "pretrained/D%s.pth" % sr2
        
def get_index():
    if iscolab:
        chosen_model=sorted(names)[0].split(".")[0]
        logs_path="/content/Retrieval-based-Voice-Conversion-WebUI/logs/"+chosen_model
        for file in os.listdir(logs_path):
            if file.endswith(".index"):
                return os.path.join(logs_path, file)
        return ''
    else:
        return ''
        
def get_indexes():
    indexes_list=[]
    if iscolab:
        for dirpath, dirnames, filenames in os.walk("/content/Retrieval-based-Voice-Conversion-WebUI/logs/"):
            for filename in filenames:
                if filename.endswith(".index"):
                    indexes_list.append(os.path.join(dirpath,filename))
        return indexes_list
    else:
        return ''
        
audio_files=[]
for dirpath, dirnames, filenames in os.walk("."):
        for filename in filenames:
            if filename.endswith(('.wav', '.mp3')) and filename not in ('mute.wav', 'mute32k.wav', 'mute40k.wav', 'mute48k.wav'):
                if "tmp" not in filename:
                    audio_files.append(filename)
def audios():
    audio_files = []
    for dirpath, dirnames, filenames in os.walk("."):
        for filename in filenames:
            if filename.endswith(('.wav', '.mp3')) and filename not in ('mute.wav', 'mute32k.wav', 'mute40k.wav', 'mute48k.wav'):
                if "tmp" not in filename:
                    audio_files.append(filename)
    return audio_files

def get_name():
    if len(audio_files) > 0:
        return sorted(audio_files)[0]
    else:
        return ''
        
def save_to_wav(record_button):
    shutil.move(record_button,'audios/recording.wav')

#with gr.Blocks() as app
with gr.Blocks(theme=gr.themes.Base()) as app:
    with gr.Row():
        warntext=gr.Markdown("Do not call your audio 'audio.wav' since that is used by the program to keep track of temporary files.")
    with gr.Row():
        sid0 = gr.Dropdown(label="1.Choose your Model.", choices=sorted(names), value=sorted(names)[0])
        get_vc(sorted(names)[0])
        vc_transform0 = gr.Number(label="Optional: You can change the pitch here or leave it at 0.", value=0)
        #refresh_button = gr.Button("Refresh Voice List", variant="primary")
        #refresh_button.click(fn=change_choices, inputs=[], outputs=[sid0])
        #clean_button = gr.Button("Unload Voice to Save Memory", variant="primary")
        spk_item = gr.Slider(minimum=0,maximum=2333,step=1,label="Please select speaker id",value=0,visible=False,interactive=True)
        #clean_button.click(fn=clean, inputs=[], outputs=[sid0])
        sid0.change(
            fn=get_vc,
            inputs=[sid0],
            outputs=[],
        )
        but0 = gr.Button("Convert", variant="primary")
    with gr.Row():
        with gr.Column():
            with gr.Row():
                dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
            with gr.Row():
                record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
            with gr.Row():
            #input_audio0 = gr.Textbox(label="Enter the Path to the Audio File to be Processed (e.g. /content/youraudio.wav)",value="/content/youraudio.wav")
                input_audio0 = gr.Dropdown(choices=sorted(audio_files), label="2.Choose your audio.", value=get_name())
                dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio0])
                refresh_button2 = gr.Button("Reload Audios", variant="primary")
                refresh_button2.click(fn=change_choices2, inputs=[], outputs=[input_audio0])
            record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[])
        with gr.Column():
            file_index1 = gr.Dropdown(
                label="3. Path to your added.index file (if it didn't automatically find it.)",
                value=get_index(),
                choices=get_indexes(),
                interactive=True,
            )
            index_rate1 = gr.Slider(
                minimum=0,
                maximum=1,
                label="Strength:",
                value=0.69,
                interactive=True,
            )
            with gr.Row():
                vc_output2 = gr.Audio(label="Output Audio (Click on the Three Dots in the Right Corner to Download)") 
            with gr.Row():
                f0method0 = gr.Radio(
                label="Optional: Change the Pitch Extraction Algorithm. Use PM for fast results or Harvest for better low range (but it's extremely slow)",
                choices=["pm", "harvest"],
                value="pm",
                interactive=True,
                )
    with gr.Row():
        vc_output1 = gr.Textbox(label="")
    with gr.Row():
        instructions = gr.Markdown("""
            This is simply a modified version of the RVC GUI found here: 
            https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
            """)
    f0_file = gr.File(label="F0 Curve File (Optional, One Pitch Per Line, Replaces Default F0 and Pitch Shift)", visible=False)        
    but0.click(
        vc_single,
        [
            spk_item,
            input_audio0,
            vc_transform0,
            f0_file,
            f0method0,
            file_index1,
            index_rate1,
        ],
        [vc_output1, vc_output2]
    )
    if iscolab:
        app.queue().launch(share=True)
    else:
        app.queue(concurrency_count=511, max_size=1022).launch(
            server_name="0.0.0.0",
            inbrowser=not noautoopen,
            server_port=listen_port,
            quiet=True,
        )