BounharAbdelaziz commited on
Commit
e55dc2e
1 Parent(s): 2865327

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -14
README.md CHANGED
@@ -1,41 +1,82 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  base_model: facebook/nllb-200-1.3B
4
- tags:
5
- - generated_from_trainer
6
  metrics:
7
  - bleu
8
  model-index:
9
  - name: Terjman-Ultra
10
  results: []
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # Terjman-Ultra
 
 
 
17
 
18
- This model is a fine-tuned version of [facebook/nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
  - Loss: 2.7070
21
  - Bleu: 4.6998
22
  - Gen Len: 35.6088
23
 
24
- ## Model description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- More information needed
27
 
28
- ## Intended uses & limitations
29
 
30
- More information needed
31
 
32
- ## Training and evaluation data
 
33
 
34
- More information needed
35
 
36
- ## Training procedure
 
37
 
38
- ### Training hyperparameters
39
 
40
  The following hyperparameters were used during training:
41
  - learning_rate: 3e-05
@@ -49,7 +90,7 @@ The following hyperparameters were used during training:
49
  - lr_scheduler_warmup_ratio: 0.03
50
  - num_epochs: 25
51
 
52
- ### Training results
53
 
54
  | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
55
  |:-------------:|:-------:|:-----:|:---------------:|:------:|:-------:|
@@ -80,7 +121,7 @@ The following hyperparameters were used during training:
80
  | 2.8129 | 24.9972 | 56050 | 2.7070 | 4.6998 | 35.6088 |
81
 
82
 
83
- ### Framework versions
84
 
85
  - Transformers 4.40.2
86
  - Pytorch 2.2.1+cu121
 
1
  ---
2
  license: cc-by-nc-4.0
3
  base_model: facebook/nllb-200-1.3B
 
 
4
  metrics:
5
  - bleu
6
  model-index:
7
  - name: Terjman-Ultra
8
  results: []
9
+ datasets:
10
+ - atlasia/darija_english
11
+ language:
12
+ - ar
13
+ - en
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
19
+ # Terjman-Ultra (1.3B)
20
+
21
+ Our model is built upon the powerful Transformer architecture, leveraging state-of-the-art natural language processing techniques.
22
+ It is a fine-tuned version of [facebook/nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B) on a the [darija_english](atlasia/darija_english) dataset enhanced with curated corpora ensuring high-quality and accurate translations.
23
 
 
24
  It achieves the following results on the evaluation set:
25
  - Loss: 2.7070
26
  - Bleu: 4.6998
27
  - Gen Len: 35.6088
28
 
29
+ The finetuning was conducted using a **A100-40GB** and took **32 hours**.
30
+
31
+ Try it out on our dedicated [Terjman-Ultra Space](https://huggingface.co/spaces/atlasia/Terjman-Ultra) 🤗
32
+
33
+ ## Usage
34
+
35
+ Using our model for translation is simple and straightforward.
36
+ You can integrate it into your projects or workflows via the Hugging Face Transformers library.
37
+ Here's a basic example of how to use the model in Python:
38
+
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
41
+
42
+ # Load the tokenizer and model
43
+ tokenizer = AutoTokenizer.from_pretrained("atlasia/Terjman-Ultra")
44
+ model = AutoModelForSeq2SeqLM.from_pretrained("atlasia/Terjman-Ultra")
45
+
46
+ # Define your Moroccan Darija Arabizi text
47
+ input_text = "Your english text goes here."
48
+
49
+ # Tokenize the input text
50
+ input_tokens = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
51
+
52
+ # Perform translation
53
+ output_tokens = model.generate(**input_tokens)
54
+
55
+ # Decode the output tokens
56
+ output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
57
+
58
+ print("Translation:", output_text)
59
+ ```
60
+
61
+ ## Example
62
+
63
+ Let's see an example of transliterating Moroccan Darija Arabizi to Arabic:
64
 
65
+ **Input**: "Hi my friend, can you tell me a joke in moroccan darija? I'd be happy to hear that from you!"
66
 
67
+ **Output**: "أهلا صاحبي، تقدر تقولي مزحة بالدارجة المغربية؟ غادي نكون فرحان باش نسمعها منك!"
68
 
69
+ ## Limiations
70
 
71
+ This version has some limitations mainly due to the Tokenizer.
72
+ We're currently collecting more data with the aim of continous improvements.
73
 
74
+ ## Feedback
75
 
76
+ We're continuously striving to improve our model's performance and usability and we will be improving it incrementaly.
77
+ If you have any feedback, suggestions, or encounter any issues, please don't hesitate to reach out to us.
78
 
79
+ ## Training hyperparameters
80
 
81
  The following hyperparameters were used during training:
82
  - learning_rate: 3e-05
 
90
  - lr_scheduler_warmup_ratio: 0.03
91
  - num_epochs: 25
92
 
93
+ ## Training results
94
 
95
  | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
96
  |:-------------:|:-------:|:-----:|:---------------:|:------:|:-------:|
 
121
  | 2.8129 | 24.9972 | 56050 | 2.7070 | 4.6998 | 35.6088 |
122
 
123
 
124
+ ## Framework versions
125
 
126
  - Transformers 4.40.2
127
  - Pytorch 2.2.1+cu121