--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: athrado/bert-finetuned-nli results: [] --- # athrado/bert-finetuned-nli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the [sick](https://huggingface.co./datasets/sick) dataset for natural language inference. It achieves the following results on the evaluation set: - Train Loss: 0.0671 - Train Accuracy: 0.9806 - Validation Loss: 0.5285 - Validation Accuracy: 0.8424 - Epoch: 4 ## Model description Example model for educational purposes: fine-tuning the bert-base-uncased model for natural language inference. ## Intended uses & limitations - Learning about transformer model and fine-tuning - Natural language inference fine-tuned on small dataset ## Training and evaluation data The model is evaluated using the sick validation. We report accuracy, and in addition we computed a weighted F1-score of 0.842. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2775, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5345 | 0.7810 | 0.4586 | 0.8283 | 0 | | 0.3253 | 0.8797 | 0.3890 | 0.8404 | 1 | | 0.2070 | 0.9290 | 0.4210 | 0.8303 | 2 | | 0.1171 | 0.9610 | 0.5200 | 0.8424 | 3 | | 0.0671 | 0.9806 | 0.5285 | 0.8424 | 4 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3