--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1 model-index: - name: Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 45.21 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 28.02 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 8.84 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 5.59 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.3 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.5 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit name: Open LLM Leaderboard --- **athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1** further pretrained on 1 epoch of the dirty stories from nothingiisreal/Reddit-Dirty-And-WritingPrompts, with all scores below 2 dropped. ----- Why do this? I have a niche use case where I cannot increase compute over 8b, and L3/3.1 are the only models in this size category that meet my needs for logic. However, both versions of L3/3.1 have the damn repetition/token overconfidence problem, and this is meant to disrupt that certainty without disrupting the model's ability to function. By the way, I *think* it's the lm_head that is causing the looping, but it might be the embeddings being too separated. I'm not going to pay two more times to test them separately, however :p # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_athirdpath__Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit) | Metric |Value| |-------------------|----:| |Avg. |20.74| |IFEval (0-Shot) |45.21| |BBH (3-Shot) |28.02| |MATH Lvl 5 (4-Shot)| 8.84| |GPQA (0-shot) | 5.59| |MuSR (0-shot) | 8.30| |MMLU-PRO (5-shot) |28.50|