--- library_name: transformers license: mit datasets: - coltekin/offenseval2020_tr language: - tr pipeline_tag: text-classification --- # atasoglu/turkish-base-bert-uncased-offenseval2020_tr This is a offensive language detection model fine-tuned with [coltekin/offenseval2020_tr](https://huggingface.co./datasets/coltekin/offenseval2020_tr) dataset on [ytu-ce-cosmos/turkish-base-bert-uncased](https://huggingface.co./ytu-ce-cosmos/turkish-base-bert-uncased). ## Usage Quick usage: ```py from transformers import pipeline pipe = pipeline("text-classification", "atasoglu/turkish-base-bert-uncased-offenseval2020_tr") print(pipe("bu bir test metnidir.", top_k=None)) # [{'label': 'NOT', 'score': 0.9970345497131348}, {'label': 'OFF', 'score': 0.0029654440004378557}] ``` Or: ```py import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "atasoglu/turkish-base-bert-uncased-offenseval2020_tr" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id).to(device) @torch.no_grad def predict(X): inputs = tokenizer(X, padding="max_length", truncation=True, max_length=256, return_tensors="pt") outputs = model.forward(**inputs.to(device)) return torch.argmax(outputs.logits, dim=-1).tolist() print(predict(["bu bir test metnidir."])) # [0] ``` ## Test Results Test results examined on the *test* split of fine-tuning dataset. | |precision|recall|f1-score|support| |------------:|:--------|:-----|:-------|:------| | NOT|0.9162 |0.9559|0.9356 |2812 | | OFF|0.7912 |0.6564|0.7176 |716 | | | | | | | |------------:|:--------|:-----|:-------|:------| | accuracy| | |0.8951 |3528 | | macro avg|0.8537 |0.8062|0.8266 |3528 | | weighted avg|0.8908 |0.8951|0.8914 |3528 |