Update README.md
Browse files
README.md
CHANGED
@@ -8,12 +8,53 @@ language:
|
|
8 |
pipeline_tag: text-classification
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
|
14 |
-
|:-|:-|:-|
|
15 |
-
|Precision|0.92|0.75|
|
16 |
-
|Recall|0.94|0.67|
|
17 |
-
|F1-Score|0.93|0.71|
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
pipeline_tag: text-classification
|
9 |
---
|
10 |
|
11 |
+
# atasoglu/turkish-base-bert-uncased-offenseval2020_tr
|
12 |
|
13 |
+
This is a offensive language detection model fine-tuned with [coltekin/offenseval2020_tr](https://huggingface.co/datasets/coltekin/offenseval2020_tr) dataset on [ytu-ce-cosmos/turkish-base-bert-uncased](https://huggingface.co/ytu-ce-cosmos/turkish-base-bert-uncased).
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
Quick usage:
|
18 |
+
|
19 |
+
```py
|
20 |
+
from transformers import pipeline
|
21 |
+
pipe = pipeline("text-classification", "atasoglu/turkish-base-bert-uncased-offenseval2020_tr")
|
22 |
+
print(pipe("bu bir test metnidir.", top_k=None))
|
23 |
+
# [{'label': 'NOT', 'score': 0.9970345497131348}, {'label': 'OFF', 'score': 0.0029654440004378557}]
|
24 |
+
```
|
25 |
+
|
26 |
+
Or:
|
27 |
+
|
28 |
+
```py
|
29 |
+
import torch
|
30 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
31 |
+
|
32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
+
model_id = "atasoglu/turkish-base-bert-uncased-offenseval2020_tr"
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
35 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id).to(device)
|
36 |
+
|
37 |
+
@torch.no_grad
|
38 |
+
def predict(X):
|
39 |
+
inputs = tokenizer(X, padding="max_length", truncation=True, max_length=256, return_tensors="pt")
|
40 |
+
outputs = model.forward(**inputs.to(device))
|
41 |
+
return torch.argmax(outputs.logits, dim=-1).tolist()
|
42 |
+
|
43 |
+
print(predict(["bu bir test metnidir."]))
|
44 |
+
# [0]
|
45 |
+
```
|
46 |
+
|
47 |
+
## Test Results
|
48 |
+
|
49 |
+
Test results examined on the *test* split of fine-tuning dataset.
|
50 |
+
|
51 |
+
| |precision|recall|f1-score|support|
|
52 |
+
|------------:|:--------|:-----|:-------|:------|
|
53 |
+
| NOT|0.9162 |0.9559|0.9356 |2812 |
|
54 |
+
| OFF|0.7912 |0.6564|0.7176 |716 |
|
55 |
+
|
56 |
+
| | | | | |
|
57 |
+
|------------:|:--------|:-----|:-------|:------|
|
58 |
+
| accuracy| | |0.8951 |3528 |
|
59 |
+
| macro avg|0.8537 |0.8062|0.8266 |3528 |
|
60 |
+
| weighted avg|0.8908 |0.8951|0.8914 |3528 |
|