--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-finetuned-food101 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 args: default metrics: - name: Accuracy type: accuracy value: 0.9210297029702971 - task: type: image-classification name: Image Classification dataset: name: food101 type: food101 config: default split: validation metrics: - name: Accuracy type: accuracy value: 0.9135841584158416 verified: true - name: Precision Macro type: precision value: 0.9151645786633058 verified: true - name: Precision Micro type: precision value: 0.9135841584158416 verified: true - name: Precision Weighted type: precision value: 0.915164578663306 verified: true - name: Recall Macro type: recall value: 0.9135841584158414 verified: true - name: Recall Micro type: recall value: 0.9135841584158416 verified: true - name: Recall Weighted type: recall value: 0.9135841584158416 verified: true - name: F1 Macro type: f1 value: 0.9138785016966742 verified: true - name: F1 Micro type: f1 value: 0.9135841584158415 verified: true - name: F1 Weighted type: f1 value: 0.9138785016966743 verified: true - name: loss type: loss value: 0.30761435627937317 verified: true --- # swin-finetuned-food101 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co./microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2772 - Accuracy: 0.9210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5077 | 1.0 | 1183 | 0.3851 | 0.8893 | | 0.3523 | 2.0 | 2366 | 0.3124 | 0.9088 | | 0.1158 | 3.0 | 3549 | 0.2772 | 0.9210 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1