--- pipeline_tag: sentence-similarity tags: - mteb - sentence-transformers - feature-extraction - sentence-similarity model-index: - name: acge_text_embedding results: - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: b44c3b011063adb25877c13823db83bb193913c4 metrics: - type: cos_sim_pearson value: 54.03434872650919 - type: cos_sim_spearman value: 58.80730796688325 - type: euclidean_pearson value: 57.47231387497989 - type: euclidean_spearman value: 58.80775026351807 - type: manhattan_pearson value: 57.46332720141574 - type: manhattan_spearman value: 58.80196022940078 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 metrics: - type: cos_sim_pearson value: 53.52621290548175 - type: cos_sim_spearman value: 57.945227768312144 - type: euclidean_pearson value: 61.17041394151802 - type: euclidean_spearman value: 57.94553287835657 - type: manhattan_pearson value: 61.168327500057885 - type: manhattan_spearman value: 57.94477516925043 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.538000000000004 - type: f1 value: 46.59920995594044 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 metrics: - type: cos_sim_pearson value: 68.27529991817154 - type: cos_sim_spearman value: 70.37095914176643 - type: euclidean_pearson value: 69.42690712802727 - type: euclidean_spearman value: 70.37017971889912 - type: manhattan_pearson value: 69.40264877917839 - type: manhattan_spearman value: 70.34786744049524 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 metrics: - type: v_measure value: 47.08027536192709 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f metrics: - type: v_measure value: 44.0526024940363 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: 8d7f1e942507dac42dc58017c1a001c3717da7df metrics: - type: map value: 88.65974993133156 - type: mrr value: 90.64761904761905 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: 23d186750531a14a0357ca22cd92d712fd512ea0 metrics: - type: map value: 88.90396838907245 - type: mrr value: 90.90932539682541 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 metrics: - type: map_at_1 value: 26.875 - type: map_at_10 value: 39.995999999999995 - type: map_at_100 value: 41.899 - type: map_at_1000 value: 42.0 - type: map_at_3 value: 35.414 - type: map_at_5 value: 38.019 - type: mrr_at_1 value: 40.635 - type: mrr_at_10 value: 48.827 - type: mrr_at_100 value: 49.805 - type: mrr_at_1000 value: 49.845 - type: mrr_at_3 value: 46.145 - type: mrr_at_5 value: 47.693999999999996 - type: ndcg_at_1 value: 40.635 - type: ndcg_at_10 value: 46.78 - type: ndcg_at_100 value: 53.986999999999995 - type: ndcg_at_1000 value: 55.684 - type: ndcg_at_3 value: 41.018 - type: ndcg_at_5 value: 43.559 - type: precision_at_1 value: 40.635 - type: precision_at_10 value: 10.427999999999999 - type: precision_at_100 value: 1.625 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 23.139000000000003 - type: precision_at_5 value: 17.004 - type: recall_at_1 value: 26.875 - type: recall_at_10 value: 57.887 - type: recall_at_100 value: 87.408 - type: recall_at_1000 value: 98.721 - type: recall_at_3 value: 40.812 - type: recall_at_5 value: 48.397 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 metrics: - type: cos_sim_accuracy value: 83.43956704750451 - type: cos_sim_ap value: 90.49172854352659 - type: cos_sim_f1 value: 84.28475486903963 - type: cos_sim_precision value: 80.84603822203135 - type: cos_sim_recall value: 88.02899228431144 - type: dot_accuracy value: 83.43956704750451 - type: dot_ap value: 90.46317132695233 - type: dot_f1 value: 84.28794294628929 - type: dot_precision value: 80.51948051948052 - type: dot_recall value: 88.4264671498714 - type: euclidean_accuracy value: 83.43956704750451 - type: euclidean_ap value: 90.49171785256486 - type: euclidean_f1 value: 84.28235820561584 - type: euclidean_precision value: 80.8022308022308 - type: euclidean_recall value: 88.07575403320084 - type: manhattan_accuracy value: 83.55983162958509 - type: manhattan_ap value: 90.48046779812815 - type: manhattan_f1 value: 84.45354259069714 - type: manhattan_precision value: 82.21877767936226 - type: manhattan_recall value: 86.81318681318682 - type: max_accuracy value: 83.55983162958509 - type: max_ap value: 90.49172854352659 - type: max_f1 value: 84.45354259069714 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: 1271c7809071a13532e05f25fb53511ffce77117 metrics: - type: map_at_1 value: 68.54599999999999 - type: map_at_10 value: 77.62400000000001 - type: map_at_100 value: 77.886 - type: map_at_1000 value: 77.89 - type: map_at_3 value: 75.966 - type: map_at_5 value: 76.995 - type: mrr_at_1 value: 68.915 - type: mrr_at_10 value: 77.703 - type: mrr_at_100 value: 77.958 - type: mrr_at_1000 value: 77.962 - type: mrr_at_3 value: 76.08 - type: mrr_at_5 value: 77.118 - type: ndcg_at_1 value: 68.809 - type: ndcg_at_10 value: 81.563 - type: ndcg_at_100 value: 82.758 - type: ndcg_at_1000 value: 82.864 - type: ndcg_at_3 value: 78.29 - type: ndcg_at_5 value: 80.113 - type: precision_at_1 value: 68.809 - type: precision_at_10 value: 9.463000000000001 - type: precision_at_100 value: 1.001 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 28.486 - type: precision_at_5 value: 18.019 - type: recall_at_1 value: 68.54599999999999 - type: recall_at_10 value: 93.625 - type: recall_at_100 value: 99.05199999999999 - type: recall_at_1000 value: 99.895 - type: recall_at_3 value: 84.879 - type: recall_at_5 value: 89.252 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: a1a333e290fe30b10f3f56498e3a0d911a693ced metrics: - type: map_at_1 value: 25.653 - type: map_at_10 value: 79.105 - type: map_at_100 value: 81.902 - type: map_at_1000 value: 81.947 - type: map_at_3 value: 54.54599999999999 - type: map_at_5 value: 69.226 - type: mrr_at_1 value: 89.35 - type: mrr_at_10 value: 92.69 - type: mrr_at_100 value: 92.77 - type: mrr_at_1000 value: 92.774 - type: mrr_at_3 value: 92.425 - type: mrr_at_5 value: 92.575 - type: ndcg_at_1 value: 89.35 - type: ndcg_at_10 value: 86.55199999999999 - type: ndcg_at_100 value: 89.35300000000001 - type: ndcg_at_1000 value: 89.782 - type: ndcg_at_3 value: 85.392 - type: ndcg_at_5 value: 84.5 - type: precision_at_1 value: 89.35 - type: precision_at_10 value: 41.589999999999996 - type: precision_at_100 value: 4.781 - type: precision_at_1000 value: 0.488 - type: precision_at_3 value: 76.683 - type: precision_at_5 value: 65.06 - type: recall_at_1 value: 25.653 - type: recall_at_10 value: 87.64999999999999 - type: recall_at_100 value: 96.858 - type: recall_at_1000 value: 99.13300000000001 - type: recall_at_3 value: 56.869 - type: recall_at_5 value: 74.024 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 metrics: - type: map_at_1 value: 52.1 - type: map_at_10 value: 62.629999999999995 - type: map_at_100 value: 63.117000000000004 - type: map_at_1000 value: 63.134 - type: map_at_3 value: 60.267 - type: map_at_5 value: 61.777 - type: mrr_at_1 value: 52.1 - type: mrr_at_10 value: 62.629999999999995 - type: mrr_at_100 value: 63.117000000000004 - type: mrr_at_1000 value: 63.134 - type: mrr_at_3 value: 60.267 - type: mrr_at_5 value: 61.777 - type: ndcg_at_1 value: 52.1 - type: ndcg_at_10 value: 67.596 - type: ndcg_at_100 value: 69.95 - type: ndcg_at_1000 value: 70.33500000000001 - type: ndcg_at_3 value: 62.82600000000001 - type: ndcg_at_5 value: 65.546 - type: precision_at_1 value: 52.1 - type: precision_at_10 value: 8.309999999999999 - type: precision_at_100 value: 0.941 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 23.400000000000002 - type: precision_at_5 value: 15.36 - type: recall_at_1 value: 52.1 - type: recall_at_10 value: 83.1 - type: recall_at_100 value: 94.1 - type: recall_at_1000 value: 97.0 - type: recall_at_3 value: 70.19999999999999 - type: recall_at_5 value: 76.8 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: 421605374b29664c5fc098418fe20ada9bd55f8a metrics: - type: accuracy value: 51.773759138130046 - type: f1 value: 40.341407912920054 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: b7c64bd89eb87f8ded463478346f76731f07bf8b metrics: - type: accuracy value: 86.69793621013133 - type: ap value: 55.46718958939327 - type: f1 value: 81.48228915952436 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: 17f9b096f80380fce5ed12a9be8be7784b337daf metrics: - type: cos_sim_pearson value: 71.1397780205448 - type: cos_sim_spearman value: 78.17368193033309 - type: euclidean_pearson value: 77.4849177602368 - type: euclidean_spearman value: 78.17369079663212 - type: manhattan_pearson value: 77.47344305182406 - type: manhattan_spearman value: 78.16454335155387 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 metrics: - type: map value: 27.76160559006673 - type: mrr value: 28.02420634920635 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 metrics: - type: map_at_1 value: 65.661 - type: map_at_10 value: 74.752 - type: map_at_100 value: 75.091 - type: map_at_1000 value: 75.104 - type: map_at_3 value: 72.997 - type: map_at_5 value: 74.119 - type: mrr_at_1 value: 67.923 - type: mrr_at_10 value: 75.376 - type: mrr_at_100 value: 75.673 - type: mrr_at_1000 value: 75.685 - type: mrr_at_3 value: 73.856 - type: mrr_at_5 value: 74.82799999999999 - type: ndcg_at_1 value: 67.923 - type: ndcg_at_10 value: 78.424 - type: ndcg_at_100 value: 79.95100000000001 - type: ndcg_at_1000 value: 80.265 - type: ndcg_at_3 value: 75.101 - type: ndcg_at_5 value: 76.992 - type: precision_at_1 value: 67.923 - type: precision_at_10 value: 9.474 - type: precision_at_100 value: 1.023 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 28.319 - type: precision_at_5 value: 17.986 - type: recall_at_1 value: 65.661 - type: recall_at_10 value: 89.09899999999999 - type: recall_at_100 value: 96.023 - type: recall_at_1000 value: 98.455 - type: recall_at_3 value: 80.314 - type: recall_at_5 value: 84.81 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 75.86751849361131 - type: f1 value: 73.04918450508 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.4364492266308 - type: f1 value: 78.120686034844 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 metrics: - type: map_at_1 value: 55.00000000000001 - type: map_at_10 value: 61.06399999999999 - type: map_at_100 value: 61.622 - type: map_at_1000 value: 61.663000000000004 - type: map_at_3 value: 59.583 - type: map_at_5 value: 60.373 - type: mrr_at_1 value: 55.2 - type: mrr_at_10 value: 61.168 - type: mrr_at_100 value: 61.726000000000006 - type: mrr_at_1000 value: 61.767 - type: mrr_at_3 value: 59.683 - type: mrr_at_5 value: 60.492999999999995 - type: ndcg_at_1 value: 55.00000000000001 - type: ndcg_at_10 value: 64.098 - type: ndcg_at_100 value: 67.05 - type: ndcg_at_1000 value: 68.262 - type: ndcg_at_3 value: 61.00600000000001 - type: ndcg_at_5 value: 62.439 - type: precision_at_1 value: 55.00000000000001 - type: precision_at_10 value: 7.37 - type: precision_at_100 value: 0.881 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 21.7 - type: precision_at_5 value: 13.719999999999999 - type: recall_at_1 value: 55.00000000000001 - type: recall_at_10 value: 73.7 - type: recall_at_100 value: 88.1 - type: recall_at_1000 value: 97.8 - type: recall_at_3 value: 65.10000000000001 - type: recall_at_5 value: 68.60000000000001 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a metrics: - type: accuracy value: 77.52666666666667 - type: f1 value: 77.49784731367215 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: 66e76a618a34d6d565d5538088562851e6daa7ec metrics: - type: cos_sim_accuracy value: 81.10449377368705 - type: cos_sim_ap value: 85.17742765935606 - type: cos_sim_f1 value: 83.00094966761633 - type: cos_sim_precision value: 75.40983606557377 - type: cos_sim_recall value: 92.29144667370645 - type: dot_accuracy value: 81.10449377368705 - type: dot_ap value: 85.17143850809614 - type: dot_f1 value: 83.01707779886148 - type: dot_precision value: 75.36606373815677 - type: dot_recall value: 92.39704329461456 - type: euclidean_accuracy value: 81.10449377368705 - type: euclidean_ap value: 85.17856775343333 - type: euclidean_f1 value: 83.00094966761633 - type: euclidean_precision value: 75.40983606557377 - type: euclidean_recall value: 92.29144667370645 - type: manhattan_accuracy value: 81.05035192203573 - type: manhattan_ap value: 85.14464459395809 - type: manhattan_f1 value: 82.96155671570953 - type: manhattan_precision value: 75.3448275862069 - type: manhattan_recall value: 92.29144667370645 - type: max_accuracy value: 81.10449377368705 - type: max_ap value: 85.17856775343333 - type: max_f1 value: 83.01707779886148 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: e610f2ebd179a8fda30ae534c3878750a96db120 metrics: - type: accuracy value: 93.71000000000001 - type: ap value: 91.83202232349356 - type: f1 value: 93.69900560334331 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 metrics: - type: cos_sim_pearson value: 39.175047651512415 - type: cos_sim_spearman value: 45.51434675777896 - type: euclidean_pearson value: 44.864110004132286 - type: euclidean_spearman value: 45.516433048896076 - type: manhattan_pearson value: 44.87153627706517 - type: manhattan_spearman value: 45.52862617925012 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 metrics: - type: cos_sim_pearson value: 34.249579701429084 - type: cos_sim_spearman value: 37.30903127368978 - type: euclidean_pearson value: 35.129438425253355 - type: euclidean_spearman value: 37.308544018709085 - type: manhattan_pearson value: 35.08936153503652 - type: manhattan_spearman value: 37.25582901077839 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 61.29309637460004 - type: cos_sim_spearman value: 65.85136090376717 - type: euclidean_pearson value: 64.04783990953557 - type: euclidean_spearman value: 65.85036859610366 - type: manhattan_pearson value: 63.995852552712186 - type: manhattan_spearman value: 65.86508416749417 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 metrics: - type: cos_sim_pearson value: 81.5595940455587 - type: cos_sim_spearman value: 82.72654634579749 - type: euclidean_pearson value: 82.4892721061365 - type: euclidean_spearman value: 82.72678504228253 - type: manhattan_pearson value: 82.4770861422454 - type: manhattan_spearman value: 82.71137469783162 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: 76631901a18387f85eaa53e5450019b87ad58ef9 metrics: - type: map value: 66.6159547610527 - type: mrr value: 76.35739406347057 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: 8731a845f1bf500a4f111cf1070785c793d10e64 metrics: - type: map_at_1 value: 27.878999999999998 - type: map_at_10 value: 77.517 - type: map_at_100 value: 81.139 - type: map_at_1000 value: 81.204 - type: map_at_3 value: 54.728 - type: map_at_5 value: 67.128 - type: mrr_at_1 value: 90.509 - type: mrr_at_10 value: 92.964 - type: mrr_at_100 value: 93.045 - type: mrr_at_1000 value: 93.048 - type: mrr_at_3 value: 92.551 - type: mrr_at_5 value: 92.81099999999999 - type: ndcg_at_1 value: 90.509 - type: ndcg_at_10 value: 85.075 - type: ndcg_at_100 value: 88.656 - type: ndcg_at_1000 value: 89.25699999999999 - type: ndcg_at_3 value: 86.58200000000001 - type: ndcg_at_5 value: 85.138 - type: precision_at_1 value: 90.509 - type: precision_at_10 value: 42.05 - type: precision_at_100 value: 5.013999999999999 - type: precision_at_1000 value: 0.516 - type: precision_at_3 value: 75.551 - type: precision_at_5 value: 63.239999999999995 - type: recall_at_1 value: 27.878999999999998 - type: recall_at_10 value: 83.941 - type: recall_at_100 value: 95.568 - type: recall_at_1000 value: 98.55000000000001 - type: recall_at_3 value: 56.374 - type: recall_at_5 value: 70.435 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 metrics: - type: accuracy value: 53.687 - type: f1 value: 51.86911933364655 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: 5798586b105c0434e4f0fe5e767abe619442cf93 metrics: - type: v_measure value: 74.65887489872564 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d metrics: - type: v_measure value: 69.00410995984436 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 metrics: - type: map_at_1 value: 59.4 - type: map_at_10 value: 69.214 - type: map_at_100 value: 69.72699999999999 - type: map_at_1000 value: 69.743 - type: map_at_3 value: 67.717 - type: map_at_5 value: 68.782 - type: mrr_at_1 value: 59.4 - type: mrr_at_10 value: 69.214 - type: mrr_at_100 value: 69.72699999999999 - type: mrr_at_1000 value: 69.743 - type: mrr_at_3 value: 67.717 - type: mrr_at_5 value: 68.782 - type: ndcg_at_1 value: 59.4 - type: ndcg_at_10 value: 73.32300000000001 - type: ndcg_at_100 value: 75.591 - type: ndcg_at_1000 value: 75.98700000000001 - type: ndcg_at_3 value: 70.339 - type: ndcg_at_5 value: 72.246 - type: precision_at_1 value: 59.4 - type: precision_at_10 value: 8.59 - type: precision_at_100 value: 0.96 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 25.967000000000002 - type: precision_at_5 value: 16.5 - type: recall_at_1 value: 59.4 - type: recall_at_10 value: 85.9 - type: recall_at_100 value: 96.0 - type: recall_at_1000 value: 99.1 - type: recall_at_3 value: 77.9 - type: recall_at_5 value: 82.5 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: 339287def212450dcaa9df8c22bf93e9980c7023 metrics: - type: accuracy value: 88.53 - type: ap value: 73.56216166534062 - type: f1 value: 87.06093694294485 ---
icon
## acge model acge模型来自于[合合信息](https://www.intsig.com/)技术团队,对外技术试用平台[TextIn](https://www.textin.com/)。合合信息是行业领先的人工智能及大数据科技企业,致力于通过智能文字识别及商业大数据领域的核心技术、C端和B端产品以及行业解决方案为全球企业和个人用户提供创新的数字化、智能化服务。 技术交流请联系,商务合作请联系,可以[点击图片](https://huggingface.co./aspire/acge_text_embedding/blob/main/img/wx.jpg),扫面二维码来加入我们的微信社群。 acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了[Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147),如图所示: ![matryoshka-small](./img/matryoshka-small.gif) 建议使用的维度为1024或者1792 | Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? | |:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:| | acge-text-embedding | 0.65 | [1024, 1792] | 1024 | Chinese | NO | ## Metric #### C-MTEB leaderboard (Chinese) 测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。 根据[infgrad](https://huggingface.co./infgrad)的建议,选取不用的输入的长度作为测试,Sequence Length为512时测试最佳。 | Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) | |:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|:-------:|:-------:| | acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 | | acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 | | acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 | | acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 | | acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 768 | 68.95 | 72.76 | 58.68 | 87.84 | 67.86 | 72.48 | 62.07 | | acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 512 | 69.07 | 72.75 | 58.7 | 87.84 | 67.99 | 72.93 | 62.09 | #### Reproduce our results **C-MTEB:** ```python import torch import argparse import functools from C_MTEB.tasks import * from typing import List, Dict from sentence_transformers import SentenceTransformer from mteb import MTEB, DRESModel class RetrievalModel(DRESModel): def __init__(self, encoder, **kwargs): self.encoder = encoder def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray: input_texts = ['{}'.format(q) for q in queries] return self._do_encode(input_texts) def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray: input_texts = ['{} {}'.format(doc.get('title', ''), doc['text']).strip() for doc in corpus] input_texts = ['{}'.format(t) for t in input_texts] return self._do_encode(input_texts) @torch.no_grad() def _do_encode(self, input_texts: List[str]) -> np.ndarray: return self.encoder.encode( sentences=input_texts, batch_size=512, normalize_embeddings=True, convert_to_numpy=True ) def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--model_name_or_path', default="acge_text_embedding", type=str) parser.add_argument('--task_type', default=None, type=str) parser.add_argument('--pooling_method', default='cls', type=str) parser.add_argument('--output_dir', default='zh_results', type=str, help='output directory') parser.add_argument('--max_len', default=1024, type=int, help='max length') return parser.parse_args() if __name__ == '__main__': args = get_args() encoder = SentenceTransformer(args.model_name_or_path).half() encoder.encode = functools.partial(encoder.encode, normalize_embeddings=True) encoder.max_seq_length = int(args.max_len) task_names = [t.description["name"] for t in MTEB(task_types=args.task_type, task_langs=['zh', 'zh-CN']).tasks] TASKS_WITH_PROMPTS = ["T2Retrieval", "MMarcoRetrieval", "DuRetrieval", "CovidRetrieval", "CmedqaRetrieval", "EcomRetrieval", "MedicalRetrieval", "VideoRetrieval"] for task in task_names: evaluation = MTEB(tasks=[task], task_langs=['zh', 'zh-CN']) if task in TASKS_WITH_PROMPTS: evaluation.run(RetrievalModel(encoder), output_folder=args.output_dir, overwrite_results=False) else: evaluation.run(encoder, output_folder=args.output_dir, overwrite_results=False) ``` ## Usage #### acge 中文系列模型 在sentence-transformer库中的使用方法: ```python from sentence_transformers import SentenceTransformer sentences = ["数据1", "数据2"] model = SentenceTransformer('acge_text_embedding') print(model.max_seq_length) embeddings_1 = model.encode(sentences, normalize_embeddings=True) embeddings_2 = model.encode(sentences, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` 在sentence-transformer库中的使用方法,选取不同的维度: ```python from sklearn.preprocessing import normalize from sentence_transformers import SentenceTransformer sentences = ["数据1", "数据2"] model = SentenceTransformer('acge_text_embedding') embeddings = model.encode(sentences, normalize_embeddings=False) matryoshka_dim = 1024 embeddings = embeddings[..., :matryoshka_dim] # Shrink the embedding dimensions embeddings = normalize(embeddings, norm="l2", axis=1) print(embeddings.shape) # => (2, 1024) ```