File size: 1,895 Bytes
1a834b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-groub23-24-finetuned-SLT-subset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-groub23-24-finetuned-SLT-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2558
- Accuracy: 0.1463

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 80

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.8674        | 0.14  | 11   | 3.6587          | 0.0488   |
| 3.7787        | 1.14  | 22   | 3.5948          | 0.1220   |
| 3.6605        | 2.14  | 33   | 3.5183          | 0.1220   |
| 3.6081        | 3.14  | 44   | 3.4284          | 0.1463   |
| 3.5543        | 4.14  | 55   | 3.3461          | 0.1463   |
| 3.4024        | 5.14  | 66   | 3.2865          | 0.1220   |
| 3.3301        | 6.14  | 77   | 3.2581          | 0.1463   |
| 3.3935        | 7.04  | 80   | 3.2558          | 0.1463   |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0+cpu
- Datasets 2.1.0
- Tokenizers 0.13.3