End of training
Browse files
README.md
CHANGED
@@ -3,6 +3,8 @@ license: cc-by-nc-4.0
|
|
3 |
base_model: MCG-NJU/videomae-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
model-index:
|
7 |
- name: videomae-base-finetuned-ucf101-subset
|
8 |
results: []
|
@@ -14,6 +16,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
# videomae-base-finetuned-ucf101-subset
|
15 |
|
16 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
|
|
|
|
|
|
17 |
|
18 |
## Model description
|
19 |
|
@@ -33,13 +38,21 @@ More information needed
|
|
33 |
|
34 |
The following hyperparameters were used during training:
|
35 |
- learning_rate: 5e-05
|
36 |
-
- train_batch_size:
|
37 |
-
- eval_batch_size:
|
38 |
- seed: 42
|
39 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
- lr_scheduler_type: linear
|
41 |
- lr_scheduler_warmup_ratio: 0.1
|
42 |
-
- training_steps:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
### Framework versions
|
45 |
|
|
|
3 |
base_model: MCG-NJU/videomae-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
model-index:
|
9 |
- name: videomae-base-finetuned-ucf101-subset
|
10 |
results: []
|
|
|
16 |
# videomae-base-finetuned-ucf101-subset
|
17 |
|
18 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5072
|
21 |
+
- Accuracy: 0.7714
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 2
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- training_steps: 300
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| 1.3061 | 0.5 | 150 | 1.1517 | 0.6286 |
|
54 |
+
| 0.3178 | 1.5 | 300 | 0.5072 | 0.7714 |
|
55 |
+
|
56 |
|
57 |
### Framework versions
|
58 |
|