File size: 2,370 Bytes
221cb39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a673d9
7135f86
221cb39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872140f
 
221cb39
 
 
 
7135f86
221cb39
 
 
 
 
8a673d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221cb39
 
 
 
7135f86
872140f
 
7135f86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-SLT-subset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-SLT-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0411
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 944

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.9695        | 0.06  | 59   | 3.6889          | 0.05     |
| 3.898         | 1.06  | 118  | 3.6205          | 0.05     |
| 3.6781        | 2.06  | 177  | 3.4775          | 0.075    |
| 3.4169        | 3.06  | 236  | 3.3709          | 0.075    |
| 3.6405        | 4.06  | 295  | 3.3190          | 0.075    |
| 3.5568        | 5.06  | 354  | 3.3243          | 0.075    |
| 3.3347        | 6.06  | 413  | 3.2671          | 0.175    |
| 3.3946        | 7.06  | 472  | 3.2436          | 0.15     |
| 3.2943        | 8.06  | 531  | 3.2095          | 0.25     |
| 3.4037        | 9.06  | 590  | 3.1415          | 0.35     |
| 3.3753        | 10.06 | 649  | 2.9745          | 0.7      |
| 3.2246        | 11.06 | 708  | 2.5009          | 0.65     |
| 2.4989        | 12.06 | 767  | 1.8618          | 0.8      |
| 1.905         | 13.06 | 826  | 1.4972          | 0.9      |
| 1.7084        | 14.06 | 885  | 1.1309          | 1.0      |
| 1.2838        | 15.06 | 944  | 1.0411          | 1.0      |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0