File size: 2,370 Bytes
221cb39 203b031 5b43cb1 221cb39 872140f 221cb39 027bc27 221cb39 203b031 221cb39 872140f 221cb39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-SLT-subset
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-SLT-subset
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3217
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 960
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.9388 | 0.06 | 61 | 3.6928 | 0.0244 |
| 3.922 | 1.06 | 122 | 3.7470 | 0.0244 |
| 3.8564 | 2.06 | 183 | 3.5744 | 0.0488 |
| 3.8 | 3.06 | 244 | 3.4795 | 0.0732 |
| 3.6299 | 4.06 | 305 | 3.4226 | 0.0732 |
| 3.7411 | 5.06 | 366 | 3.3728 | 0.0732 |
| 3.4738 | 6.06 | 427 | 3.2456 | 0.0732 |
| 3.3784 | 7.06 | 488 | 2.8674 | 0.5610 |
| 2.9917 | 8.06 | 549 | 2.2194 | 0.7073 |
| 2.1432 | 9.06 | 610 | 1.4439 | 0.8780 |
| 1.377 | 10.06 | 671 | 1.0637 | 0.9512 |
| 1.1721 | 11.06 | 732 | 0.7384 | 0.9512 |
| 0.8749 | 12.06 | 793 | 0.4955 | 1.0 |
| 0.4729 | 13.06 | 854 | 0.3995 | 1.0 |
| 0.4317 | 14.06 | 915 | 0.3367 | 1.0 |
| 0.3025 | 15.05 | 960 | 0.3217 | 1.0 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|