--- library_name: peft license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results_lora results: [] --- # results_lora This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2590 - Accuracy: 0.9014 - F1: 0.9044 - Precision: 0.8925 - Recall: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3298 | 1.0 | 4210 | 0.2669 | 0.8922 | 0.8934 | 0.8995 | 0.8874 | | 0.236 | 2.0 | 8420 | 0.2702 | 0.9048 | 0.9089 | 0.8865 | 0.9324 | | 0.1772 | 3.0 | 12630 | 0.2590 | 0.9014 | 0.9044 | 0.8925 | 0.9167 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1