Ashish Soni commited on
Commit
0289736
·
1 Parent(s): d709178

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 251.66 +/- 20.03
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2fa002dbd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2fa002dc60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2fa002dcf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2fa002dd80>", "_build": "<function ActorCriticPolicy._build at 0x7f2fa002de10>", "forward": "<function ActorCriticPolicy.forward at 0x7f2fa002dea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2fa002df30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2fa002dfc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2fa002e050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2fa002e0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2fa002e170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2fa002e200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2f392bd340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684753065577382127, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbyDbzhgJe6FbLMu4RguTYnSNq5m/wltgAAgD8AAIA/zY+fvRTwp7o7VeO6OuT7tXkL/bmzjwI6AACAPwAAgD8Acb48w6Fjuv6JyDvUTLY4rRSFOYnHA7oAAIA/AACAP8CzkD3+vuo92IVsvOJvVL7cQ549UgQcvQAAAAAAAAAAgOtNPRRSi7qurLy4hkOos+4QEbs1T9s3AACAPwAAgD9mZHe8SGGMuG78FjiA10MzOQoku6QXNLcAAIA/AACAP5rt1zuuq5i67m4XvC7nCLkSiCA7g252OAAAgD8AAIA/AOTVO/ZkaLpOZ087FriBtgPxHbjuWXO6AACAPwAAgD+zhpM99pwzuo27NDjVsF+yjrJ+uk3aUbcAAIA/AACAPwBgJjtIB4O6rSqYvIVvf7hg4fi5c/zlNwAAgD8AAIA/AGRhPVy/drrSZY47iU+KOAaIDzuKZS+6AACAPwAAgD+aDG29SP+Kuqasmrped6a1B0DEOuRTszkAAIA/AACAP5oAg73DwVu6M5ZburEx4LWvx5A722d9OQAAgD8AAIA/GqhAvurZrj/wqWy+NE3GvojYjL7G6zu9AAAAAAAAAAAzV3Y8uMbxuSVbCLpNvuS0BLFiuzwyIDkAAIA/AACAPwDoCbzdOwM/DfgIPsCqXb5F+UE9xj83PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMy4QSSNfiMAWyUTegDjAF0lEdAnquT6BRQ8HV9lChoBkdAZlrE1l5GBmgHTegDaAhHQJ6x4H5aePJ1fZQoaAZHQGREKwhW5pdoB03oA2gIR0Cesth7E5yVdX2UKGgGR0BnVrOVxCIDaAdN6ANoCEdAnrMfmDDjznV9lChoBkdAXinHWBjFymgHTegDaAhHQJ64blYEGJN1fZQoaAZHQFzn5X2dupFoB03oA2gIR0CezJjXWe6JdX2UKGgGR0BjSgAXEZR9aAdN6ANoCEdAns4o3R5TqHV9lChoBkdAZwwD9Oymh2gHTegDaAhHQJ7XD1uivgZ1fZQoaAZHQGZFns1KoQ5oB03oA2gIR0Ce2SQqZtvXdX2UKGgGR0BhT01O0svqaAdN6ANoCEdAnt1jTz/ZNHV9lChoBkdAY1/iobXHzmgHTegDaAhHQJ7eETCcf/51fZQoaAZHQGLSX7cfvF5oB03oA2gIR0Ce4Z4smOU/dX2UKGgGR0Blb8M9bHIZaAdN6ANoCEdAnuZRtpEhJXV9lChoBkdAY+x63y7PIGgHTegDaAhHQJ7p8h+vyLB1fZQoaAZHQGf5/VqesgdoB03oA2gIR0CfA5mtQsPKdX2UKGgGR0BjahRCQcPwaAdN6ANoCEdAnwm9AcDKYHV9lChoBkdAYeBPLPldT2gHTegDaAhHQJ8NAtBfKIV1fZQoaAZHQGSWOwHJLdxoB03oA2gIR0CfEuu0CzTndX2UKGgGR0BlSwvcrRShaAdN6ANoCEdAnxPaFRHf/HV9lChoBkdAX9ZN0vGp/GgHTegDaAhHQJ8UFysCDEp1fZQoaAZHQElEL61stTVoB00QAWgIR0CfGOZdv864dX2UKGgGR0BjIDk2gnMMaAdN6ANoCEdAnxkHWBjFynV9lChoBkdAXih+y7f512gHTegDaAhHQJ8rHVqesgd1fZQoaAZHQGLch/y5I6NoB03oA2gIR0CfLHrFwT/RdX2UKGgGR0BhASjDbah6aAdN6ANoCEdAnzSlv/BFeHV9lChoBkdAZh4JbdJrcmgHTegDaAhHQJ82aUwBYFJ1fZQoaAZHQGPfy0rsjVxoB03oA2gIR0CfOk2nsLOSdX2UKGgGR0Bg0AmReTmoaAdN6ANoCEdAnzr89W6shnV9lChoBkdAZQPBnjABUGgHTegDaAhHQJ8+T4agmJF1fZQoaAZHQE6Dsa86FM9oB00CAWgIR0CfPoB3iaRZdX2UKGgGR0BmsPTTfBN3aAdN6ANoCEdAn0MOObRWtHV9lChoBkdAR5AcBEKE4GgHTT4BaAhHQJ9DxiBoVVR1fZQoaAZHQGW/njIaLn9oB03oA2gIR0CfRmX/HYHxdX2UKGgGR0BB2Dy4FzMiaAdL2WgIR0CfZI7wazeGdX2UKGgGR0Bgvt4C6pYLaAdN6ANoCEdAn2UGfwqiGnV9lChoBkdAXp5ky1uzhWgHTegDaAhHQJ9oN5s0pEx1fZQoaAZHQGQjvtdAxBVoB03oA2gIR0Cfbc++dsi0dX2UKGgGR0BjrBceKbazaAdN6ANoCEdAn27NGZuyeXV9lChoBkdAYmSrbxmTT2gHTegDaAhHQJ9vCO3lS0l1fZQoaAZHQF49Dxb0OExoB03oA2gIR0CfdCYK6WgOdX2UKGgGR0Bi/QZMtbs4aAdN6ANoCEdAn3RI+B6KL3V9lChoBkdAReDAFgUlA2gHS+xoCEdAn4AMoH9m6HV9lChoBkfAMVR0MgEEDGgHTSsBaAhHQJ+GL7Hhjvx1fZQoaAZHQGLzMWweNkxoB03oA2gIR0CfktcQiA2AdX2UKGgGR0BjPxwVCXyBaAdN6ANoCEdAn5SymhufmXV9lChoBkdAY+1TI/7iymgHTegDaAhHQJ+YkNrj5sV1fZQoaAZHQF9FbayrxRVoB03oA2gIR0CfmTmIj4YadX2UKGgGR0BhweK/EfknaAdN6ANoCEdAn5xqfJ3gUHV9lChoBkdAY6mgZjx0+2gHTegDaAhHQJ+cifJ3gUF1fZQoaAZHQGN7Y3vQWvdoB03oA2gIR0CfoXCOmzjWdX2UKGgGR0BlOZYLb5/LaAdN6ANoCEdAn6P/vfCQ93V9lChoBkdAYTewM6RyO2gHTegDaAhHQJ/CSZv1lGx1fZQoaAZHQGLwlfAsTWZoB03oA2gIR0Cfwr7xd6cBdX2UKGgGR0Bh9X0NBnjAaAdN6ANoCEdAn8XQGOdXk3V9lChoBkdAXxQ2BJ7LMmgHTegDaAhHQJ/MeA6Mir11fZQoaAZHQGCBfMwDeTFoB03oA2gIR0Cf0a9PDYRNdX2UKGgGR0BiGbGDL8rJaAdN6ANoCEdAn9HVl05lv3V9lChoBkdAZJYfHxSYPWgHTegDaAhHQJ/cT3ueBhB1fZQoaAZHQGEKzg2qDK5oB03oA2gIR0Cf4c3Cbc46dX2UKGgGR0BiEwAjps42aAdN6ANoCEdAn+4f3i704HV9lChoBkdAZKSXeFcps2gHTegDaAhHQJ/v9NFjNIN1fZQoaAZHQGImtATqSoxoB03oA2gIR0Cf8+DUVi4KdX2UKGgGR0BeJffj0cwQaAdN6ANoCEdAn/SInfEXL3V9lChoBkdAZm4H8jzI3mgHTegDaAhHQJ/3ujqOcUd1fZQoaAZHQGDtS/j81oBoB03oA2gIR0Cf99y44Ia+dX2UKGgGR0BiEy37UG3XaAdN6ANoCEdAn/ynTRYzSHV9lChoBkdAZG7VVghKUWgHTegDaAhHQJ//M5HVf/p1fZQoaAZHQCRxKFqSHM5oB00YAWgIR0CgDDTwlSjydX2UKGgGR0BhGEBKcurZaAdN6ANoCEdAoA5DDn/1hHV9lChoBkdAZJIPtlZowmgHTegDaAhHQKAOfmV7hNx1fZQoaAZHQGOzYbsF+uxoB03oA2gIR0CgD/bgbZOBdX2UKGgGR0BiImDxsl9jaAdN6ANoCEdAoBNbV4HHFXV9lChoBkdAZSGWXTmW+2gHTegDaAhHQKAV5tqHoHN1fZQoaAZHQGICLpRoAXFoB03oA2gIR0CgFfornTy8dX2UKGgGR0BeJl14gRseaAdN6ANoCEdAoBtv4wh4dXV9lChoBkdAY1heJpFkQWgHTegDaAhHQKAeRUBnzxx1fZQoaAZHQFvOjhky1u1oB03oA2gIR0CgJIlWOp84dX2UKGgGR0BlNOLR8c+8aAdN6ANoCEdAoCWBTqB3A3V9lChoBkdAZGLpaiblR2gHTegDaAhHQKAnq9EkSmJ1fZQoaAZHQGHXTzundftoB03oA2gIR0CgKhxIz3yqdX2UKGgGR0Bh6isIVuaXaAdN6ANoCEdAoCozMPjGUHV9lChoBkdAYctWgezUqmgHTegDaAhHQKAtXJyyUs51fZQoaAZHQGPVBU70WdpoB03oA2gIR0CgLtpGe+VUdX2UKGgGR0Bl18P4EfT1aAdN6ANoCEdAoDMUGX5WR3V9lChoBkdAYhxr/sE7n2gHTegDaAhHQKA+JnbItDl1fZQoaAZHQGTJtLcsUZhoB03oA2gIR0CgPmHctXgcdX2UKGgGR0Bey8uBczInaAdN6ANoCEdAoD/hm7J4jnV9lChoBkdAZBAw2VE/jmgHTegDaAhHQKBDCxqO9391fZQoaAZHQGCOOR1X/5toB03oA2gIR0CgRaGYjSogdX2UKGgGR0Bi4jTz/ZM+aAdN6ANoCEdAoEW5OLzf8HV9lChoBkdAZcY2jwhGIGgHTegDaAhHQKBK4X8fmtB1fZQoaAZHQGbN/u1F6RhoB03oA2gIR0CgTZCWmgrZdX2UKGgGR0BjOS2tuDSPaAdN6ANoCEdAoFM5qREF4nV9lChoBkdAZLKNkvsZ52gHTegDaAhHQKBUCqaw2VF1fZQoaAZHQGH3wDV6NVBoB03oA2gIR0CgVeNJvo/zdX2UKGgGR0BjeffKp1ifaAdN6ANoCEdAoFfN+NLlFXV9lChoBkdAYmrNUOuq3mgHTegDaAhHQKBX4K2KEWZ1fZQoaAZHQGbAlNtZV4poB03oA2gIR0CgWjf7iyY5dX2UKGgGR0BkWuz2OAAiaAdN6ANoCEdAoFtx+DvmYHV9lChoBkdAYHVOKwY+CGgHTegDaAhHQKBfEFjd56d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-Lunar-Lander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7a31da0173ff318f0405c0f06089d2cf8e704ef992eaa49d46262ccd19dbe73
3
+ size 146755
ppo-Lunar-Lander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-Lunar-Lander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2fa002dbd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2fa002dc60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2fa002dcf0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2fa002dd80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2fa002de10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2fa002dea0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2fa002df30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2fa002dfc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2fa002e050>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2fa002e0e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2fa002e170>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2fa002e200>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2f392bd340>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1684753065577382127,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbyDbzhgJe6FbLMu4RguTYnSNq5m/wltgAAgD8AAIA/zY+fvRTwp7o7VeO6OuT7tXkL/bmzjwI6AACAPwAAgD8Acb48w6Fjuv6JyDvUTLY4rRSFOYnHA7oAAIA/AACAP8CzkD3+vuo92IVsvOJvVL7cQ549UgQcvQAAAAAAAAAAgOtNPRRSi7qurLy4hkOos+4QEbs1T9s3AACAPwAAgD9mZHe8SGGMuG78FjiA10MzOQoku6QXNLcAAIA/AACAP5rt1zuuq5i67m4XvC7nCLkSiCA7g252OAAAgD8AAIA/AOTVO/ZkaLpOZ087FriBtgPxHbjuWXO6AACAPwAAgD+zhpM99pwzuo27NDjVsF+yjrJ+uk3aUbcAAIA/AACAPwBgJjtIB4O6rSqYvIVvf7hg4fi5c/zlNwAAgD8AAIA/AGRhPVy/drrSZY47iU+KOAaIDzuKZS+6AACAPwAAgD+aDG29SP+Kuqasmrped6a1B0DEOuRTszkAAIA/AACAP5oAg73DwVu6M5ZburEx4LWvx5A722d9OQAAgD8AAIA/GqhAvurZrj/wqWy+NE3GvojYjL7G6zu9AAAAAAAAAAAzV3Y8uMbxuSVbCLpNvuS0BLFiuzwyIDkAAIA/AACAPwDoCbzdOwM/DfgIPsCqXb5F+UE9xj83PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMy4QSSNfiMAWyUTegDjAF0lEdAnquT6BRQ8HV9lChoBkdAZlrE1l5GBmgHTegDaAhHQJ6x4H5aePJ1fZQoaAZHQGREKwhW5pdoB03oA2gIR0Cesth7E5yVdX2UKGgGR0BnVrOVxCIDaAdN6ANoCEdAnrMfmDDjznV9lChoBkdAXinHWBjFymgHTegDaAhHQJ64blYEGJN1fZQoaAZHQFzn5X2dupFoB03oA2gIR0CezJjXWe6JdX2UKGgGR0BjSgAXEZR9aAdN6ANoCEdAns4o3R5TqHV9lChoBkdAZwwD9Oymh2gHTegDaAhHQJ7XD1uivgZ1fZQoaAZHQGZFns1KoQ5oB03oA2gIR0Ce2SQqZtvXdX2UKGgGR0BhT01O0svqaAdN6ANoCEdAnt1jTz/ZNHV9lChoBkdAY1/iobXHzmgHTegDaAhHQJ7eETCcf/51fZQoaAZHQGLSX7cfvF5oB03oA2gIR0Ce4Z4smOU/dX2UKGgGR0Blb8M9bHIZaAdN6ANoCEdAnuZRtpEhJXV9lChoBkdAY+x63y7PIGgHTegDaAhHQJ7p8h+vyLB1fZQoaAZHQGf5/VqesgdoB03oA2gIR0CfA5mtQsPKdX2UKGgGR0BjahRCQcPwaAdN6ANoCEdAnwm9AcDKYHV9lChoBkdAYeBPLPldT2gHTegDaAhHQJ8NAtBfKIV1fZQoaAZHQGSWOwHJLdxoB03oA2gIR0CfEuu0CzTndX2UKGgGR0BlSwvcrRShaAdN6ANoCEdAnxPaFRHf/HV9lChoBkdAX9ZN0vGp/GgHTegDaAhHQJ8UFysCDEp1fZQoaAZHQElEL61stTVoB00QAWgIR0CfGOZdv864dX2UKGgGR0BjIDk2gnMMaAdN6ANoCEdAnxkHWBjFynV9lChoBkdAXih+y7f512gHTegDaAhHQJ8rHVqesgd1fZQoaAZHQGLch/y5I6NoB03oA2gIR0CfLHrFwT/RdX2UKGgGR0BhASjDbah6aAdN6ANoCEdAnzSlv/BFeHV9lChoBkdAZh4JbdJrcmgHTegDaAhHQJ82aUwBYFJ1fZQoaAZHQGPfy0rsjVxoB03oA2gIR0CfOk2nsLOSdX2UKGgGR0Bg0AmReTmoaAdN6ANoCEdAnzr89W6shnV9lChoBkdAZQPBnjABUGgHTegDaAhHQJ8+T4agmJF1fZQoaAZHQE6Dsa86FM9oB00CAWgIR0CfPoB3iaRZdX2UKGgGR0BmsPTTfBN3aAdN6ANoCEdAn0MOObRWtHV9lChoBkdAR5AcBEKE4GgHTT4BaAhHQJ9DxiBoVVR1fZQoaAZHQGW/njIaLn9oB03oA2gIR0CfRmX/HYHxdX2UKGgGR0BB2Dy4FzMiaAdL2WgIR0CfZI7wazeGdX2UKGgGR0Bgvt4C6pYLaAdN6ANoCEdAn2UGfwqiGnV9lChoBkdAXp5ky1uzhWgHTegDaAhHQJ9oN5s0pEx1fZQoaAZHQGQjvtdAxBVoB03oA2gIR0Cfbc++dsi0dX2UKGgGR0BjrBceKbazaAdN6ANoCEdAn27NGZuyeXV9lChoBkdAYmSrbxmTT2gHTegDaAhHQJ9vCO3lS0l1fZQoaAZHQF49Dxb0OExoB03oA2gIR0CfdCYK6WgOdX2UKGgGR0Bi/QZMtbs4aAdN6ANoCEdAn3RI+B6KL3V9lChoBkdAReDAFgUlA2gHS+xoCEdAn4AMoH9m6HV9lChoBkfAMVR0MgEEDGgHTSsBaAhHQJ+GL7Hhjvx1fZQoaAZHQGLzMWweNkxoB03oA2gIR0CfktcQiA2AdX2UKGgGR0BjPxwVCXyBaAdN6ANoCEdAn5SymhufmXV9lChoBkdAY+1TI/7iymgHTegDaAhHQJ+YkNrj5sV1fZQoaAZHQF9FbayrxRVoB03oA2gIR0CfmTmIj4YadX2UKGgGR0BhweK/EfknaAdN6ANoCEdAn5xqfJ3gUHV9lChoBkdAY6mgZjx0+2gHTegDaAhHQJ+cifJ3gUF1fZQoaAZHQGN7Y3vQWvdoB03oA2gIR0CfoXCOmzjWdX2UKGgGR0BlOZYLb5/LaAdN6ANoCEdAn6P/vfCQ93V9lChoBkdAYTewM6RyO2gHTegDaAhHQJ/CSZv1lGx1fZQoaAZHQGLwlfAsTWZoB03oA2gIR0Cfwr7xd6cBdX2UKGgGR0Bh9X0NBnjAaAdN6ANoCEdAn8XQGOdXk3V9lChoBkdAXxQ2BJ7LMmgHTegDaAhHQJ/MeA6Mir11fZQoaAZHQGCBfMwDeTFoB03oA2gIR0Cf0a9PDYRNdX2UKGgGR0BiGbGDL8rJaAdN6ANoCEdAn9HVl05lv3V9lChoBkdAZJYfHxSYPWgHTegDaAhHQJ/cT3ueBhB1fZQoaAZHQGEKzg2qDK5oB03oA2gIR0Cf4c3Cbc46dX2UKGgGR0BiEwAjps42aAdN6ANoCEdAn+4f3i704HV9lChoBkdAZKSXeFcps2gHTegDaAhHQJ/v9NFjNIN1fZQoaAZHQGImtATqSoxoB03oA2gIR0Cf8+DUVi4KdX2UKGgGR0BeJffj0cwQaAdN6ANoCEdAn/SInfEXL3V9lChoBkdAZm4H8jzI3mgHTegDaAhHQJ/3ujqOcUd1fZQoaAZHQGDtS/j81oBoB03oA2gIR0Cf99y44Ia+dX2UKGgGR0BiEy37UG3XaAdN6ANoCEdAn/ynTRYzSHV9lChoBkdAZG7VVghKUWgHTegDaAhHQJ//M5HVf/p1fZQoaAZHQCRxKFqSHM5oB00YAWgIR0CgDDTwlSjydX2UKGgGR0BhGEBKcurZaAdN6ANoCEdAoA5DDn/1hHV9lChoBkdAZJIPtlZowmgHTegDaAhHQKAOfmV7hNx1fZQoaAZHQGOzYbsF+uxoB03oA2gIR0CgD/bgbZOBdX2UKGgGR0BiImDxsl9jaAdN6ANoCEdAoBNbV4HHFXV9lChoBkdAZSGWXTmW+2gHTegDaAhHQKAV5tqHoHN1fZQoaAZHQGICLpRoAXFoB03oA2gIR0CgFfornTy8dX2UKGgGR0BeJl14gRseaAdN6ANoCEdAoBtv4wh4dXV9lChoBkdAY1heJpFkQWgHTegDaAhHQKAeRUBnzxx1fZQoaAZHQFvOjhky1u1oB03oA2gIR0CgJIlWOp84dX2UKGgGR0BlNOLR8c+8aAdN6ANoCEdAoCWBTqB3A3V9lChoBkdAZGLpaiblR2gHTegDaAhHQKAnq9EkSmJ1fZQoaAZHQGHXTzundftoB03oA2gIR0CgKhxIz3yqdX2UKGgGR0Bh6isIVuaXaAdN6ANoCEdAoCozMPjGUHV9lChoBkdAYctWgezUqmgHTegDaAhHQKAtXJyyUs51fZQoaAZHQGPVBU70WdpoB03oA2gIR0CgLtpGe+VUdX2UKGgGR0Bl18P4EfT1aAdN6ANoCEdAoDMUGX5WR3V9lChoBkdAYhxr/sE7n2gHTegDaAhHQKA+JnbItDl1fZQoaAZHQGTJtLcsUZhoB03oA2gIR0CgPmHctXgcdX2UKGgGR0Bey8uBczInaAdN6ANoCEdAoD/hm7J4jnV9lChoBkdAZBAw2VE/jmgHTegDaAhHQKBDCxqO9391fZQoaAZHQGCOOR1X/5toB03oA2gIR0CgRaGYjSogdX2UKGgGR0Bi4jTz/ZM+aAdN6ANoCEdAoEW5OLzf8HV9lChoBkdAZcY2jwhGIGgHTegDaAhHQKBK4X8fmtB1fZQoaAZHQGbN/u1F6RhoB03oA2gIR0CgTZCWmgrZdX2UKGgGR0BjOS2tuDSPaAdN6ANoCEdAoFM5qREF4nV9lChoBkdAZLKNkvsZ52gHTegDaAhHQKBUCqaw2VF1fZQoaAZHQGH3wDV6NVBoB03oA2gIR0CgVeNJvo/zdX2UKGgGR0BjeffKp1ifaAdN6ANoCEdAoFfN+NLlFXV9lChoBkdAYmrNUOuq3mgHTegDaAhHQKBX4K2KEWZ1fZQoaAZHQGbAlNtZV4poB03oA2gIR0CgWjf7iyY5dX2UKGgGR0BkWuz2OAAiaAdN6ANoCEdAoFtx+DvmYHV9lChoBkdAYHVOKwY+CGgHTegDaAhHQKBfEFjd56d1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-Lunar-Lander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43242427b476d76579d1f18288f92f87b2d0abe3f688462965a191cae3aa4d54
3
+ size 87929
ppo-Lunar-Lander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad12c0bd1626309b6356bded42c64985f89fbf05e840a9dd1b280b44c82dc008
3
+ size 43329
ppo-Lunar-Lander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Lunar-Lander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (162 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 251.65883906907956, "std_reward": 20.029744121028422, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-22T11:20:17.125052"}