--- language: - hi license: apache-2.0 base_model: vasista22/whisper-hindi-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Small Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 hi type: mozilla-foundation/common_voice_16_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 10.110413057544196 --- # Whisper Base Bengali This model is a fine-tuned version of [vasista22/whisper-hindi-small](https://huggingface.co./vasista22/whisper-hindi-small) on the mozilla-foundation/common_voice_16_0 hi dataset. It achieves the following results on the evaluation set: - Loss: 0.1836 - Wer: 10.1104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1889 | 0.5 | 50 | 0.1993 | 10.3734 | | 0.1597 | 1.24 | 100 | 0.1836 | 10.1104 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0