arnabdhar commited on
Commit
d4cd784
·
unverified ·
1 Parent(s): b4823ff

Initial Commit

Browse files
Files changed (2) hide show
  1. README.md +34 -0
  2. model.pt +3 -0
README.md ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - ultralytics
4
+ - yolov8
5
+ - object-detection
6
+ - pytorch
7
+ library_name: ultralytics
8
+ library_version: 8.0.198
9
+ ---
10
+ # YOLOv8 model to detect import texts on an Aadhar Card
11
+
12
+ ## Overview
13
+
14
+ Aadhaar Card text detection is the process of identifying and extracting text from Aadhaar Card images. This can be useful for a variety of applications, such as automatic data entry, fraud detection, and document verification.
15
+
16
+ One approach to Aadhaar Card text detection is to use YOLOv8, a state-of-the-art object detection model. YOLOv8 can be trained to detect a variety of object classes, including text. Once trained, YOLOv8 can be used to detect text in Aadhaar Card images and extract the text to a text file or other format.
17
+
18
+ ## Getting Started with Inference
19
+
20
+ ### Install Dependencies
21
+
22
+ ```bash
23
+ $ pip install ultralytics huggingface_hub supervision
24
+ ```
25
+
26
+ ### Load the model
27
+
28
+ ```python
29
+ from ultralytics import YOLO
30
+ from huggingface_hub import hf_hub_download
31
+
32
+ # l.oad model
33
+
34
+ ```
model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eab7bb7942f3e06519783be32f53167a3331e85b417c30b541c89aa03d6155cf
3
+ size 6255534