File size: 1,815 Bytes
7201a3f 0ac437e 7201a3f 0ac437e 7201a3f fa366a2 3b0d3ae 8e96920 3b0d3ae 0ac437e 3b0d3ae 3e8ba06 8e96920 3e8ba06 3b0d3ae 3e8ba06 a61f395 25858a9 e144d41 3b0d3ae a61f395 25858a9 5095bc8 25858a9 13414e8 3b0d3ae a61f395 5095bc8 a61f395 e144d41 4b4682a e144d41 3e8ba06 3b0d3ae 8e96920 3b0d3ae 8e96920 3b0d3ae 8e96920 dc72769 d30b1c7 dc72769 1b117f6 4b4682a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
pipeline_tag: object-detection
tags:
- ultralytics
- yolo
- yolov8
- tracking
- image-classification
- obb
- object-detection
language:
- hy
datasets:
- armvectores/handwritten_text_detection
---
# YOLOv8 Handwritten Text Detection
## Model Description
YOLOv8 is the eighth version of the You Only Look Once (YOLO) object detection algorithm. It excels in speed and accuracy, making it an ideal choice for real-time applications. The YOLOv8 model provided here has been fine-tuned on a diverse dataset of handwritten texts to improve its specificity in detecting handwritten content as opposed to typed or printed materials.
## How to use
```
pip install ultralytics
```
```
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
from matplotlib import pyplot as plt
# Load the weights from our repository
model_path = hf_hub_download(local_dir=".",
repo_id="armvectores/yolov8n_handwritten_text_detection",
filename="best.pt")
model = YOLO(model_path)
# Load test blank
test_blank_path = hf_hub_download(local_dir=".",
repo_id="armvectores/yolov8n_handwritten_text_detection",
filename="test_blank.png")
# Do the predictions
res = model.predict(source=test_blank_path, project='.',name='detected', exist_ok=True, save=True, show=False, show_labels=False, show_conf=False, conf=0.5, )
plt.figure(figsize=(15,10))
plt.imshow(plt.imread('detected/test_blank.png'))
plt.show()
```
## Tests
<p align="center">
<img width="400px" src="prediction1.png" alt="qr"/>
</p>
<p align="center">
<img width="400px" src="prediction2.png" alt="qr"/>
</p>
## Metrics
The final IoU=0.98
The IoU during training
<p align="center">
<img src="results.png" width="200" />
</p>
|