File size: 1,815 Bytes
7201a3f
 
 
0ac437e
 
 
 
 
 
 
7201a3f
 
0ac437e
 
7201a3f
fa366a2
3b0d3ae
 
 
 
8e96920
3b0d3ae
 
0ac437e
3b0d3ae
3e8ba06
8e96920
3e8ba06
3b0d3ae
3e8ba06
a61f395
25858a9
e144d41
3b0d3ae
a61f395
25858a9
5095bc8
25858a9
13414e8
3b0d3ae
a61f395
 
5095bc8
a61f395
e144d41
4b4682a
e144d41
 
 
 
 
3e8ba06
3b0d3ae
 
8e96920
3b0d3ae
8e96920
 
 
3b0d3ae
8e96920
 
 
dc72769
 
 
d30b1c7
 
 
dc72769
1b117f6
4b4682a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
pipeline_tag: object-detection
tags:
- ultralytics
- yolo
- yolov8
- tracking
- image-classification
- obb
- object-detection
language:
- hy
datasets:
- armvectores/handwritten_text_detection
---
# YOLOv8 Handwritten Text Detection


## Model Description

YOLOv8 is the eighth version of the You Only Look Once (YOLO) object detection algorithm. It excels in speed and accuracy, making it an ideal choice for real-time applications. The YOLOv8 model provided here has been fine-tuned on a diverse dataset of handwritten texts to improve its specificity in detecting handwritten content as opposed to typed or printed materials.


## How to use

```
pip install ultralytics
```

```
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
from matplotlib import pyplot as plt

# Load the weights from our repository
model_path = hf_hub_download(local_dir=".",
                             repo_id="armvectores/yolov8n_handwritten_text_detection",
                             filename="best.pt")
model = YOLO(model_path)

# Load test blank
test_blank_path = hf_hub_download(local_dir=".",
                             repo_id="armvectores/yolov8n_handwritten_text_detection",
                             filename="test_blank.png")

# Do the predictions
res = model.predict(source=test_blank_path, project='.',name='detected', exist_ok=True, save=True, show=False, show_labels=False, show_conf=False, conf=0.5, )

plt.figure(figsize=(15,10))
plt.imshow(plt.imread('detected/test_blank.png'))
plt.show()
```


## Tests

<p align="center">
 <img width="400px" src="prediction1.png" alt="qr"/>
</p>

<p align="center">
 <img width="400px" src="prediction2.png" alt="qr"/>
</p>

## Metrics

The final IoU=0.98

The IoU during training
<p align="center">
 <img src="results.png" width="200" />
</p>