Upload 12 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +1254 -0
- config.json +38 -0
- config_sentence_transformers.json +7 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +5 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- feature-extraction
|
5 |
+
- sentence-similarity
|
6 |
+
- mteb
|
7 |
+
- transformers
|
8 |
+
- transformers.js
|
9 |
+
inference: false
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
- zh
|
14 |
+
model-index:
|
15 |
+
- name: jina-embeddings-v2-base-zh
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: STS
|
19 |
+
dataset:
|
20 |
+
type: C-MTEB/AFQMC
|
21 |
+
name: MTEB AFQMC
|
22 |
+
config: default
|
23 |
+
split: validation
|
24 |
+
revision: None
|
25 |
+
metrics:
|
26 |
+
- type: cos_sim_pearson
|
27 |
+
value: 48.51403119231363
|
28 |
+
- type: cos_sim_spearman
|
29 |
+
value: 50.5928547846445
|
30 |
+
- type: euclidean_pearson
|
31 |
+
value: 48.750436310559074
|
32 |
+
- type: euclidean_spearman
|
33 |
+
value: 50.50950238691385
|
34 |
+
- type: manhattan_pearson
|
35 |
+
value: 48.7866189440328
|
36 |
+
- type: manhattan_spearman
|
37 |
+
value: 50.58692402017165
|
38 |
+
- task:
|
39 |
+
type: STS
|
40 |
+
dataset:
|
41 |
+
type: C-MTEB/ATEC
|
42 |
+
name: MTEB ATEC
|
43 |
+
config: default
|
44 |
+
split: test
|
45 |
+
revision: None
|
46 |
+
metrics:
|
47 |
+
- type: cos_sim_pearson
|
48 |
+
value: 50.25985700105725
|
49 |
+
- type: cos_sim_spearman
|
50 |
+
value: 51.28815934593989
|
51 |
+
- type: euclidean_pearson
|
52 |
+
value: 52.70329248799904
|
53 |
+
- type: euclidean_spearman
|
54 |
+
value: 50.94101139559258
|
55 |
+
- type: manhattan_pearson
|
56 |
+
value: 52.6647237400892
|
57 |
+
- type: manhattan_spearman
|
58 |
+
value: 50.922441325406176
|
59 |
+
- task:
|
60 |
+
type: Classification
|
61 |
+
dataset:
|
62 |
+
type: mteb/amazon_reviews_multi
|
63 |
+
name: MTEB AmazonReviewsClassification (zh)
|
64 |
+
config: zh
|
65 |
+
split: test
|
66 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
67 |
+
metrics:
|
68 |
+
- type: accuracy
|
69 |
+
value: 34.944
|
70 |
+
- type: f1
|
71 |
+
value: 34.06478860660109
|
72 |
+
- task:
|
73 |
+
type: STS
|
74 |
+
dataset:
|
75 |
+
type: C-MTEB/BQ
|
76 |
+
name: MTEB BQ
|
77 |
+
config: default
|
78 |
+
split: test
|
79 |
+
revision: None
|
80 |
+
metrics:
|
81 |
+
- type: cos_sim_pearson
|
82 |
+
value: 65.15667035488342
|
83 |
+
- type: cos_sim_spearman
|
84 |
+
value: 66.07110142081
|
85 |
+
- type: euclidean_pearson
|
86 |
+
value: 60.447598102249714
|
87 |
+
- type: euclidean_spearman
|
88 |
+
value: 61.826575796578766
|
89 |
+
- type: manhattan_pearson
|
90 |
+
value: 60.39364279354984
|
91 |
+
- type: manhattan_spearman
|
92 |
+
value: 61.78743491223281
|
93 |
+
- task:
|
94 |
+
type: Clustering
|
95 |
+
dataset:
|
96 |
+
type: C-MTEB/CLSClusteringP2P
|
97 |
+
name: MTEB CLSClusteringP2P
|
98 |
+
config: default
|
99 |
+
split: test
|
100 |
+
revision: None
|
101 |
+
metrics:
|
102 |
+
- type: v_measure
|
103 |
+
value: 39.96714175391701
|
104 |
+
- task:
|
105 |
+
type: Clustering
|
106 |
+
dataset:
|
107 |
+
type: C-MTEB/CLSClusteringS2S
|
108 |
+
name: MTEB CLSClusteringS2S
|
109 |
+
config: default
|
110 |
+
split: test
|
111 |
+
revision: None
|
112 |
+
metrics:
|
113 |
+
- type: v_measure
|
114 |
+
value: 38.39863566717934
|
115 |
+
- task:
|
116 |
+
type: Reranking
|
117 |
+
dataset:
|
118 |
+
type: C-MTEB/CMedQAv1-reranking
|
119 |
+
name: MTEB CMedQAv1
|
120 |
+
config: default
|
121 |
+
split: test
|
122 |
+
revision: None
|
123 |
+
metrics:
|
124 |
+
- type: map
|
125 |
+
value: 83.63680381780644
|
126 |
+
- type: mrr
|
127 |
+
value: 86.16476190476192
|
128 |
+
- task:
|
129 |
+
type: Reranking
|
130 |
+
dataset:
|
131 |
+
type: C-MTEB/CMedQAv2-reranking
|
132 |
+
name: MTEB CMedQAv2
|
133 |
+
config: default
|
134 |
+
split: test
|
135 |
+
revision: None
|
136 |
+
metrics:
|
137 |
+
- type: map
|
138 |
+
value: 83.74350667859487
|
139 |
+
- type: mrr
|
140 |
+
value: 86.10388888888889
|
141 |
+
- task:
|
142 |
+
type: Retrieval
|
143 |
+
dataset:
|
144 |
+
type: C-MTEB/CmedqaRetrieval
|
145 |
+
name: MTEB CmedqaRetrieval
|
146 |
+
config: default
|
147 |
+
split: dev
|
148 |
+
revision: None
|
149 |
+
metrics:
|
150 |
+
- type: map_at_1
|
151 |
+
value: 22.072
|
152 |
+
- type: map_at_10
|
153 |
+
value: 32.942
|
154 |
+
- type: map_at_100
|
155 |
+
value: 34.768
|
156 |
+
- type: map_at_1000
|
157 |
+
value: 34.902
|
158 |
+
- type: map_at_3
|
159 |
+
value: 29.357
|
160 |
+
- type: map_at_5
|
161 |
+
value: 31.236000000000004
|
162 |
+
- type: mrr_at_1
|
163 |
+
value: 34.259
|
164 |
+
- type: mrr_at_10
|
165 |
+
value: 41.957
|
166 |
+
- type: mrr_at_100
|
167 |
+
value: 42.982
|
168 |
+
- type: mrr_at_1000
|
169 |
+
value: 43.042
|
170 |
+
- type: mrr_at_3
|
171 |
+
value: 39.722
|
172 |
+
- type: mrr_at_5
|
173 |
+
value: 40.898
|
174 |
+
- type: ndcg_at_1
|
175 |
+
value: 34.259
|
176 |
+
- type: ndcg_at_10
|
177 |
+
value: 39.153
|
178 |
+
- type: ndcg_at_100
|
179 |
+
value: 46.493
|
180 |
+
- type: ndcg_at_1000
|
181 |
+
value: 49.01
|
182 |
+
- type: ndcg_at_3
|
183 |
+
value: 34.636
|
184 |
+
- type: ndcg_at_5
|
185 |
+
value: 36.278
|
186 |
+
- type: precision_at_1
|
187 |
+
value: 34.259
|
188 |
+
- type: precision_at_10
|
189 |
+
value: 8.815000000000001
|
190 |
+
- type: precision_at_100
|
191 |
+
value: 1.474
|
192 |
+
- type: precision_at_1000
|
193 |
+
value: 0.179
|
194 |
+
- type: precision_at_3
|
195 |
+
value: 19.73
|
196 |
+
- type: precision_at_5
|
197 |
+
value: 14.174000000000001
|
198 |
+
- type: recall_at_1
|
199 |
+
value: 22.072
|
200 |
+
- type: recall_at_10
|
201 |
+
value: 48.484
|
202 |
+
- type: recall_at_100
|
203 |
+
value: 79.035
|
204 |
+
- type: recall_at_1000
|
205 |
+
value: 96.15
|
206 |
+
- type: recall_at_3
|
207 |
+
value: 34.607
|
208 |
+
- type: recall_at_5
|
209 |
+
value: 40.064
|
210 |
+
- task:
|
211 |
+
type: PairClassification
|
212 |
+
dataset:
|
213 |
+
type: C-MTEB/CMNLI
|
214 |
+
name: MTEB Cmnli
|
215 |
+
config: default
|
216 |
+
split: validation
|
217 |
+
revision: None
|
218 |
+
metrics:
|
219 |
+
- type: cos_sim_accuracy
|
220 |
+
value: 76.7047504509922
|
221 |
+
- type: cos_sim_ap
|
222 |
+
value: 85.26649874800871
|
223 |
+
- type: cos_sim_f1
|
224 |
+
value: 78.13528724646915
|
225 |
+
- type: cos_sim_precision
|
226 |
+
value: 71.57587548638132
|
227 |
+
- type: cos_sim_recall
|
228 |
+
value: 86.01823708206688
|
229 |
+
- type: dot_accuracy
|
230 |
+
value: 70.13830426939266
|
231 |
+
- type: dot_ap
|
232 |
+
value: 77.01510412382171
|
233 |
+
- type: dot_f1
|
234 |
+
value: 73.56710042713817
|
235 |
+
- type: dot_precision
|
236 |
+
value: 63.955094991364426
|
237 |
+
- type: dot_recall
|
238 |
+
value: 86.57937806873977
|
239 |
+
- type: euclidean_accuracy
|
240 |
+
value: 75.53818400481059
|
241 |
+
- type: euclidean_ap
|
242 |
+
value: 84.34668448241264
|
243 |
+
- type: euclidean_f1
|
244 |
+
value: 77.51741608613047
|
245 |
+
- type: euclidean_precision
|
246 |
+
value: 70.65614777756399
|
247 |
+
- type: euclidean_recall
|
248 |
+
value: 85.85457096095394
|
249 |
+
- type: manhattan_accuracy
|
250 |
+
value: 75.49007817197835
|
251 |
+
- type: manhattan_ap
|
252 |
+
value: 84.40297506704299
|
253 |
+
- type: manhattan_f1
|
254 |
+
value: 77.63185324160932
|
255 |
+
- type: manhattan_precision
|
256 |
+
value: 70.03949595636637
|
257 |
+
- type: manhattan_recall
|
258 |
+
value: 87.07037643207856
|
259 |
+
- type: max_accuracy
|
260 |
+
value: 76.7047504509922
|
261 |
+
- type: max_ap
|
262 |
+
value: 85.26649874800871
|
263 |
+
- type: max_f1
|
264 |
+
value: 78.13528724646915
|
265 |
+
- task:
|
266 |
+
type: Retrieval
|
267 |
+
dataset:
|
268 |
+
type: C-MTEB/CovidRetrieval
|
269 |
+
name: MTEB CovidRetrieval
|
270 |
+
config: default
|
271 |
+
split: dev
|
272 |
+
revision: None
|
273 |
+
metrics:
|
274 |
+
- type: map_at_1
|
275 |
+
value: 69.178
|
276 |
+
- type: map_at_10
|
277 |
+
value: 77.523
|
278 |
+
- type: map_at_100
|
279 |
+
value: 77.793
|
280 |
+
- type: map_at_1000
|
281 |
+
value: 77.79899999999999
|
282 |
+
- type: map_at_3
|
283 |
+
value: 75.878
|
284 |
+
- type: map_at_5
|
285 |
+
value: 76.849
|
286 |
+
- type: mrr_at_1
|
287 |
+
value: 69.44200000000001
|
288 |
+
- type: mrr_at_10
|
289 |
+
value: 77.55
|
290 |
+
- type: mrr_at_100
|
291 |
+
value: 77.819
|
292 |
+
- type: mrr_at_1000
|
293 |
+
value: 77.826
|
294 |
+
- type: mrr_at_3
|
295 |
+
value: 75.957
|
296 |
+
- type: mrr_at_5
|
297 |
+
value: 76.916
|
298 |
+
- type: ndcg_at_1
|
299 |
+
value: 69.44200000000001
|
300 |
+
- type: ndcg_at_10
|
301 |
+
value: 81.217
|
302 |
+
- type: ndcg_at_100
|
303 |
+
value: 82.45
|
304 |
+
- type: ndcg_at_1000
|
305 |
+
value: 82.636
|
306 |
+
- type: ndcg_at_3
|
307 |
+
value: 77.931
|
308 |
+
- type: ndcg_at_5
|
309 |
+
value: 79.655
|
310 |
+
- type: precision_at_1
|
311 |
+
value: 69.44200000000001
|
312 |
+
- type: precision_at_10
|
313 |
+
value: 9.357
|
314 |
+
- type: precision_at_100
|
315 |
+
value: 0.993
|
316 |
+
- type: precision_at_1000
|
317 |
+
value: 0.101
|
318 |
+
- type: precision_at_3
|
319 |
+
value: 28.1
|
320 |
+
- type: precision_at_5
|
321 |
+
value: 17.724
|
322 |
+
- type: recall_at_1
|
323 |
+
value: 69.178
|
324 |
+
- type: recall_at_10
|
325 |
+
value: 92.624
|
326 |
+
- type: recall_at_100
|
327 |
+
value: 98.209
|
328 |
+
- type: recall_at_1000
|
329 |
+
value: 99.684
|
330 |
+
- type: recall_at_3
|
331 |
+
value: 83.772
|
332 |
+
- type: recall_at_5
|
333 |
+
value: 87.882
|
334 |
+
- task:
|
335 |
+
type: Retrieval
|
336 |
+
dataset:
|
337 |
+
type: C-MTEB/DuRetrieval
|
338 |
+
name: MTEB DuRetrieval
|
339 |
+
config: default
|
340 |
+
split: dev
|
341 |
+
revision: None
|
342 |
+
metrics:
|
343 |
+
- type: map_at_1
|
344 |
+
value: 25.163999999999998
|
345 |
+
- type: map_at_10
|
346 |
+
value: 76.386
|
347 |
+
- type: map_at_100
|
348 |
+
value: 79.339
|
349 |
+
- type: map_at_1000
|
350 |
+
value: 79.39500000000001
|
351 |
+
- type: map_at_3
|
352 |
+
value: 52.959
|
353 |
+
- type: map_at_5
|
354 |
+
value: 66.59
|
355 |
+
- type: mrr_at_1
|
356 |
+
value: 87.9
|
357 |
+
- type: mrr_at_10
|
358 |
+
value: 91.682
|
359 |
+
- type: mrr_at_100
|
360 |
+
value: 91.747
|
361 |
+
- type: mrr_at_1000
|
362 |
+
value: 91.751
|
363 |
+
- type: mrr_at_3
|
364 |
+
value: 91.267
|
365 |
+
- type: mrr_at_5
|
366 |
+
value: 91.527
|
367 |
+
- type: ndcg_at_1
|
368 |
+
value: 87.9
|
369 |
+
- type: ndcg_at_10
|
370 |
+
value: 84.569
|
371 |
+
- type: ndcg_at_100
|
372 |
+
value: 87.83800000000001
|
373 |
+
- type: ndcg_at_1000
|
374 |
+
value: 88.322
|
375 |
+
- type: ndcg_at_3
|
376 |
+
value: 83.473
|
377 |
+
- type: ndcg_at_5
|
378 |
+
value: 82.178
|
379 |
+
- type: precision_at_1
|
380 |
+
value: 87.9
|
381 |
+
- type: precision_at_10
|
382 |
+
value: 40.605000000000004
|
383 |
+
- type: precision_at_100
|
384 |
+
value: 4.752
|
385 |
+
- type: precision_at_1000
|
386 |
+
value: 0.488
|
387 |
+
- type: precision_at_3
|
388 |
+
value: 74.9
|
389 |
+
- type: precision_at_5
|
390 |
+
value: 62.96000000000001
|
391 |
+
- type: recall_at_1
|
392 |
+
value: 25.163999999999998
|
393 |
+
- type: recall_at_10
|
394 |
+
value: 85.97399999999999
|
395 |
+
- type: recall_at_100
|
396 |
+
value: 96.63000000000001
|
397 |
+
- type: recall_at_1000
|
398 |
+
value: 99.016
|
399 |
+
- type: recall_at_3
|
400 |
+
value: 55.611999999999995
|
401 |
+
- type: recall_at_5
|
402 |
+
value: 71.936
|
403 |
+
- task:
|
404 |
+
type: Retrieval
|
405 |
+
dataset:
|
406 |
+
type: C-MTEB/EcomRetrieval
|
407 |
+
name: MTEB EcomRetrieval
|
408 |
+
config: default
|
409 |
+
split: dev
|
410 |
+
revision: None
|
411 |
+
metrics:
|
412 |
+
- type: map_at_1
|
413 |
+
value: 48.6
|
414 |
+
- type: map_at_10
|
415 |
+
value: 58.831
|
416 |
+
- type: map_at_100
|
417 |
+
value: 59.427
|
418 |
+
- type: map_at_1000
|
419 |
+
value: 59.44199999999999
|
420 |
+
- type: map_at_3
|
421 |
+
value: 56.383
|
422 |
+
- type: map_at_5
|
423 |
+
value: 57.753
|
424 |
+
- type: mrr_at_1
|
425 |
+
value: 48.6
|
426 |
+
- type: mrr_at_10
|
427 |
+
value: 58.831
|
428 |
+
- type: mrr_at_100
|
429 |
+
value: 59.427
|
430 |
+
- type: mrr_at_1000
|
431 |
+
value: 59.44199999999999
|
432 |
+
- type: mrr_at_3
|
433 |
+
value: 56.383
|
434 |
+
- type: mrr_at_5
|
435 |
+
value: 57.753
|
436 |
+
- type: ndcg_at_1
|
437 |
+
value: 48.6
|
438 |
+
- type: ndcg_at_10
|
439 |
+
value: 63.951
|
440 |
+
- type: ndcg_at_100
|
441 |
+
value: 66.72200000000001
|
442 |
+
- type: ndcg_at_1000
|
443 |
+
value: 67.13900000000001
|
444 |
+
- type: ndcg_at_3
|
445 |
+
value: 58.882
|
446 |
+
- type: ndcg_at_5
|
447 |
+
value: 61.373
|
448 |
+
- type: precision_at_1
|
449 |
+
value: 48.6
|
450 |
+
- type: precision_at_10
|
451 |
+
value: 8.01
|
452 |
+
- type: precision_at_100
|
453 |
+
value: 0.928
|
454 |
+
- type: precision_at_1000
|
455 |
+
value: 0.096
|
456 |
+
- type: precision_at_3
|
457 |
+
value: 22.033
|
458 |
+
- type: precision_at_5
|
459 |
+
value: 14.44
|
460 |
+
- type: recall_at_1
|
461 |
+
value: 48.6
|
462 |
+
- type: recall_at_10
|
463 |
+
value: 80.10000000000001
|
464 |
+
- type: recall_at_100
|
465 |
+
value: 92.80000000000001
|
466 |
+
- type: recall_at_1000
|
467 |
+
value: 96.1
|
468 |
+
- type: recall_at_3
|
469 |
+
value: 66.10000000000001
|
470 |
+
- type: recall_at_5
|
471 |
+
value: 72.2
|
472 |
+
- task:
|
473 |
+
type: Classification
|
474 |
+
dataset:
|
475 |
+
type: C-MTEB/IFlyTek-classification
|
476 |
+
name: MTEB IFlyTek
|
477 |
+
config: default
|
478 |
+
split: validation
|
479 |
+
revision: None
|
480 |
+
metrics:
|
481 |
+
- type: accuracy
|
482 |
+
value: 47.36437091188918
|
483 |
+
- type: f1
|
484 |
+
value: 36.60946954228577
|
485 |
+
- task:
|
486 |
+
type: Classification
|
487 |
+
dataset:
|
488 |
+
type: C-MTEB/JDReview-classification
|
489 |
+
name: MTEB JDReview
|
490 |
+
config: default
|
491 |
+
split: test
|
492 |
+
revision: None
|
493 |
+
metrics:
|
494 |
+
- type: accuracy
|
495 |
+
value: 79.5684803001876
|
496 |
+
- type: ap
|
497 |
+
value: 42.671935929201524
|
498 |
+
- type: f1
|
499 |
+
value: 73.31912729103752
|
500 |
+
- task:
|
501 |
+
type: STS
|
502 |
+
dataset:
|
503 |
+
type: C-MTEB/LCQMC
|
504 |
+
name: MTEB LCQMC
|
505 |
+
config: default
|
506 |
+
split: test
|
507 |
+
revision: None
|
508 |
+
metrics:
|
509 |
+
- type: cos_sim_pearson
|
510 |
+
value: 68.62670112113864
|
511 |
+
- type: cos_sim_spearman
|
512 |
+
value: 75.74009123170768
|
513 |
+
- type: euclidean_pearson
|
514 |
+
value: 73.93002595958237
|
515 |
+
- type: euclidean_spearman
|
516 |
+
value: 75.35222935003587
|
517 |
+
- type: manhattan_pearson
|
518 |
+
value: 73.89870445158144
|
519 |
+
- type: manhattan_spearman
|
520 |
+
value: 75.31714936339398
|
521 |
+
- task:
|
522 |
+
type: Reranking
|
523 |
+
dataset:
|
524 |
+
type: C-MTEB/Mmarco-reranking
|
525 |
+
name: MTEB MMarcoReranking
|
526 |
+
config: default
|
527 |
+
split: dev
|
528 |
+
revision: None
|
529 |
+
metrics:
|
530 |
+
- type: map
|
531 |
+
value: 31.5372713650176
|
532 |
+
- type: mrr
|
533 |
+
value: 30.163095238095238
|
534 |
+
- task:
|
535 |
+
type: Retrieval
|
536 |
+
dataset:
|
537 |
+
type: C-MTEB/MMarcoRetrieval
|
538 |
+
name: MTEB MMarcoRetrieval
|
539 |
+
config: default
|
540 |
+
split: dev
|
541 |
+
revision: None
|
542 |
+
metrics:
|
543 |
+
- type: map_at_1
|
544 |
+
value: 65.054
|
545 |
+
- type: map_at_10
|
546 |
+
value: 74.156
|
547 |
+
- type: map_at_100
|
548 |
+
value: 74.523
|
549 |
+
- type: map_at_1000
|
550 |
+
value: 74.535
|
551 |
+
- type: map_at_3
|
552 |
+
value: 72.269
|
553 |
+
- type: map_at_5
|
554 |
+
value: 73.41
|
555 |
+
- type: mrr_at_1
|
556 |
+
value: 67.24900000000001
|
557 |
+
- type: mrr_at_10
|
558 |
+
value: 74.78399999999999
|
559 |
+
- type: mrr_at_100
|
560 |
+
value: 75.107
|
561 |
+
- type: mrr_at_1000
|
562 |
+
value: 75.117
|
563 |
+
- type: mrr_at_3
|
564 |
+
value: 73.13499999999999
|
565 |
+
- type: mrr_at_5
|
566 |
+
value: 74.13499999999999
|
567 |
+
- type: ndcg_at_1
|
568 |
+
value: 67.24900000000001
|
569 |
+
- type: ndcg_at_10
|
570 |
+
value: 77.96300000000001
|
571 |
+
- type: ndcg_at_100
|
572 |
+
value: 79.584
|
573 |
+
- type: ndcg_at_1000
|
574 |
+
value: 79.884
|
575 |
+
- type: ndcg_at_3
|
576 |
+
value: 74.342
|
577 |
+
- type: ndcg_at_5
|
578 |
+
value: 76.278
|
579 |
+
- type: precision_at_1
|
580 |
+
value: 67.24900000000001
|
581 |
+
- type: precision_at_10
|
582 |
+
value: 9.466
|
583 |
+
- type: precision_at_100
|
584 |
+
value: 1.027
|
585 |
+
- type: precision_at_1000
|
586 |
+
value: 0.105
|
587 |
+
- type: precision_at_3
|
588 |
+
value: 27.955999999999996
|
589 |
+
- type: precision_at_5
|
590 |
+
value: 17.817
|
591 |
+
- type: recall_at_1
|
592 |
+
value: 65.054
|
593 |
+
- type: recall_at_10
|
594 |
+
value: 89.113
|
595 |
+
- type: recall_at_100
|
596 |
+
value: 96.369
|
597 |
+
- type: recall_at_1000
|
598 |
+
value: 98.714
|
599 |
+
- type: recall_at_3
|
600 |
+
value: 79.45400000000001
|
601 |
+
- type: recall_at_5
|
602 |
+
value: 84.06
|
603 |
+
- task:
|
604 |
+
type: Classification
|
605 |
+
dataset:
|
606 |
+
type: mteb/amazon_massive_intent
|
607 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
608 |
+
config: zh-CN
|
609 |
+
split: test
|
610 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
611 |
+
metrics:
|
612 |
+
- type: accuracy
|
613 |
+
value: 68.1977135171486
|
614 |
+
- type: f1
|
615 |
+
value: 67.23114308718404
|
616 |
+
- task:
|
617 |
+
type: Classification
|
618 |
+
dataset:
|
619 |
+
type: mteb/amazon_massive_scenario
|
620 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
621 |
+
config: zh-CN
|
622 |
+
split: test
|
623 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
624 |
+
metrics:
|
625 |
+
- type: accuracy
|
626 |
+
value: 71.92669804976462
|
627 |
+
- type: f1
|
628 |
+
value: 72.90628475628779
|
629 |
+
- task:
|
630 |
+
type: Retrieval
|
631 |
+
dataset:
|
632 |
+
type: C-MTEB/MedicalRetrieval
|
633 |
+
name: MTEB MedicalRetrieval
|
634 |
+
config: default
|
635 |
+
split: dev
|
636 |
+
revision: None
|
637 |
+
metrics:
|
638 |
+
- type: map_at_1
|
639 |
+
value: 49.2
|
640 |
+
- type: map_at_10
|
641 |
+
value: 54.539
|
642 |
+
- type: map_at_100
|
643 |
+
value: 55.135
|
644 |
+
- type: map_at_1000
|
645 |
+
value: 55.19199999999999
|
646 |
+
- type: map_at_3
|
647 |
+
value: 53.383
|
648 |
+
- type: map_at_5
|
649 |
+
value: 54.142999999999994
|
650 |
+
- type: mrr_at_1
|
651 |
+
value: 49.2
|
652 |
+
- type: mrr_at_10
|
653 |
+
value: 54.539
|
654 |
+
- type: mrr_at_100
|
655 |
+
value: 55.135999999999996
|
656 |
+
- type: mrr_at_1000
|
657 |
+
value: 55.19199999999999
|
658 |
+
- type: mrr_at_3
|
659 |
+
value: 53.383
|
660 |
+
- type: mrr_at_5
|
661 |
+
value: 54.142999999999994
|
662 |
+
- type: ndcg_at_1
|
663 |
+
value: 49.2
|
664 |
+
- type: ndcg_at_10
|
665 |
+
value: 57.123000000000005
|
666 |
+
- type: ndcg_at_100
|
667 |
+
value: 60.21300000000001
|
668 |
+
- type: ndcg_at_1000
|
669 |
+
value: 61.915
|
670 |
+
- type: ndcg_at_3
|
671 |
+
value: 54.772
|
672 |
+
- type: ndcg_at_5
|
673 |
+
value: 56.157999999999994
|
674 |
+
- type: precision_at_1
|
675 |
+
value: 49.2
|
676 |
+
- type: precision_at_10
|
677 |
+
value: 6.52
|
678 |
+
- type: precision_at_100
|
679 |
+
value: 0.8009999999999999
|
680 |
+
- type: precision_at_1000
|
681 |
+
value: 0.094
|
682 |
+
- type: precision_at_3
|
683 |
+
value: 19.6
|
684 |
+
- type: precision_at_5
|
685 |
+
value: 12.44
|
686 |
+
- type: recall_at_1
|
687 |
+
value: 49.2
|
688 |
+
- type: recall_at_10
|
689 |
+
value: 65.2
|
690 |
+
- type: recall_at_100
|
691 |
+
value: 80.10000000000001
|
692 |
+
- type: recall_at_1000
|
693 |
+
value: 93.89999999999999
|
694 |
+
- type: recall_at_3
|
695 |
+
value: 58.8
|
696 |
+
- type: recall_at_5
|
697 |
+
value: 62.2
|
698 |
+
- task:
|
699 |
+
type: Classification
|
700 |
+
dataset:
|
701 |
+
type: C-MTEB/MultilingualSentiment-classification
|
702 |
+
name: MTEB MultilingualSentiment
|
703 |
+
config: default
|
704 |
+
split: validation
|
705 |
+
revision: None
|
706 |
+
metrics:
|
707 |
+
- type: accuracy
|
708 |
+
value: 63.29333333333334
|
709 |
+
- type: f1
|
710 |
+
value: 63.03293854259612
|
711 |
+
- task:
|
712 |
+
type: PairClassification
|
713 |
+
dataset:
|
714 |
+
type: C-MTEB/OCNLI
|
715 |
+
name: MTEB Ocnli
|
716 |
+
config: default
|
717 |
+
split: validation
|
718 |
+
revision: None
|
719 |
+
metrics:
|
720 |
+
- type: cos_sim_accuracy
|
721 |
+
value: 75.69030860855442
|
722 |
+
- type: cos_sim_ap
|
723 |
+
value: 80.6157833772759
|
724 |
+
- type: cos_sim_f1
|
725 |
+
value: 77.87524366471735
|
726 |
+
- type: cos_sim_precision
|
727 |
+
value: 72.3076923076923
|
728 |
+
- type: cos_sim_recall
|
729 |
+
value: 84.37170010559663
|
730 |
+
- type: dot_accuracy
|
731 |
+
value: 67.78559826746074
|
732 |
+
- type: dot_ap
|
733 |
+
value: 72.00871467527499
|
734 |
+
- type: dot_f1
|
735 |
+
value: 72.58722247394654
|
736 |
+
- type: dot_precision
|
737 |
+
value: 63.57142857142857
|
738 |
+
- type: dot_recall
|
739 |
+
value: 84.58289334741288
|
740 |
+
- type: euclidean_accuracy
|
741 |
+
value: 75.20303194369248
|
742 |
+
- type: euclidean_ap
|
743 |
+
value: 80.98587256415605
|
744 |
+
- type: euclidean_f1
|
745 |
+
value: 77.26396917148362
|
746 |
+
- type: euclidean_precision
|
747 |
+
value: 71.03631532329496
|
748 |
+
- type: euclidean_recall
|
749 |
+
value: 84.68848996832101
|
750 |
+
- type: manhattan_accuracy
|
751 |
+
value: 75.20303194369248
|
752 |
+
- type: manhattan_ap
|
753 |
+
value: 80.93460699513219
|
754 |
+
- type: manhattan_f1
|
755 |
+
value: 77.124773960217
|
756 |
+
- type: manhattan_precision
|
757 |
+
value: 67.43083003952569
|
758 |
+
- type: manhattan_recall
|
759 |
+
value: 90.07391763463569
|
760 |
+
- type: max_accuracy
|
761 |
+
value: 75.69030860855442
|
762 |
+
- type: max_ap
|
763 |
+
value: 80.98587256415605
|
764 |
+
- type: max_f1
|
765 |
+
value: 77.87524366471735
|
766 |
+
- task:
|
767 |
+
type: Classification
|
768 |
+
dataset:
|
769 |
+
type: C-MTEB/OnlineShopping-classification
|
770 |
+
name: MTEB OnlineShopping
|
771 |
+
config: default
|
772 |
+
split: test
|
773 |
+
revision: None
|
774 |
+
metrics:
|
775 |
+
- type: accuracy
|
776 |
+
value: 87.00000000000001
|
777 |
+
- type: ap
|
778 |
+
value: 83.24372135949511
|
779 |
+
- type: f1
|
780 |
+
value: 86.95554191530607
|
781 |
+
- task:
|
782 |
+
type: STS
|
783 |
+
dataset:
|
784 |
+
type: C-MTEB/PAWSX
|
785 |
+
name: MTEB PAWSX
|
786 |
+
config: default
|
787 |
+
split: test
|
788 |
+
revision: None
|
789 |
+
metrics:
|
790 |
+
- type: cos_sim_pearson
|
791 |
+
value: 37.57616811591219
|
792 |
+
- type: cos_sim_spearman
|
793 |
+
value: 41.490259084930045
|
794 |
+
- type: euclidean_pearson
|
795 |
+
value: 38.9155043692188
|
796 |
+
- type: euclidean_spearman
|
797 |
+
value: 39.16056534305623
|
798 |
+
- type: manhattan_pearson
|
799 |
+
value: 38.76569892264335
|
800 |
+
- type: manhattan_spearman
|
801 |
+
value: 38.99891685590743
|
802 |
+
- task:
|
803 |
+
type: STS
|
804 |
+
dataset:
|
805 |
+
type: C-MTEB/QBQTC
|
806 |
+
name: MTEB QBQTC
|
807 |
+
config: default
|
808 |
+
split: test
|
809 |
+
revision: None
|
810 |
+
metrics:
|
811 |
+
- type: cos_sim_pearson
|
812 |
+
value: 35.44858610359665
|
813 |
+
- type: cos_sim_spearman
|
814 |
+
value: 38.11128146262466
|
815 |
+
- type: euclidean_pearson
|
816 |
+
value: 31.928644189822457
|
817 |
+
- type: euclidean_spearman
|
818 |
+
value: 34.384936631696554
|
819 |
+
- type: manhattan_pearson
|
820 |
+
value: 31.90586687414376
|
821 |
+
- type: manhattan_spearman
|
822 |
+
value: 34.35770153777186
|
823 |
+
- task:
|
824 |
+
type: STS
|
825 |
+
dataset:
|
826 |
+
type: mteb/sts22-crosslingual-sts
|
827 |
+
name: MTEB STS22 (zh)
|
828 |
+
config: zh
|
829 |
+
split: test
|
830 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
831 |
+
metrics:
|
832 |
+
- type: cos_sim_pearson
|
833 |
+
value: 66.54931957553592
|
834 |
+
- type: cos_sim_spearman
|
835 |
+
value: 69.25068863016632
|
836 |
+
- type: euclidean_pearson
|
837 |
+
value: 50.26525596106869
|
838 |
+
- type: euclidean_spearman
|
839 |
+
value: 63.83352741910006
|
840 |
+
- type: manhattan_pearson
|
841 |
+
value: 49.98798282198196
|
842 |
+
- type: manhattan_spearman
|
843 |
+
value: 63.87649521907841
|
844 |
+
- task:
|
845 |
+
type: STS
|
846 |
+
dataset:
|
847 |
+
type: C-MTEB/STSB
|
848 |
+
name: MTEB STSB
|
849 |
+
config: default
|
850 |
+
split: test
|
851 |
+
revision: None
|
852 |
+
metrics:
|
853 |
+
- type: cos_sim_pearson
|
854 |
+
value: 82.52782476625825
|
855 |
+
- type: cos_sim_spearman
|
856 |
+
value: 82.55618986168398
|
857 |
+
- type: euclidean_pearson
|
858 |
+
value: 78.48190631687673
|
859 |
+
- type: euclidean_spearman
|
860 |
+
value: 78.39479731354655
|
861 |
+
- type: manhattan_pearson
|
862 |
+
value: 78.51176592165885
|
863 |
+
- type: manhattan_spearman
|
864 |
+
value: 78.42363787303265
|
865 |
+
- task:
|
866 |
+
type: Reranking
|
867 |
+
dataset:
|
868 |
+
type: C-MTEB/T2Reranking
|
869 |
+
name: MTEB T2Reranking
|
870 |
+
config: default
|
871 |
+
split: dev
|
872 |
+
revision: None
|
873 |
+
metrics:
|
874 |
+
- type: map
|
875 |
+
value: 67.36693873615643
|
876 |
+
- type: mrr
|
877 |
+
value: 77.83847701797939
|
878 |
+
- task:
|
879 |
+
type: Retrieval
|
880 |
+
dataset:
|
881 |
+
type: C-MTEB/T2Retrieval
|
882 |
+
name: MTEB T2Retrieval
|
883 |
+
config: default
|
884 |
+
split: dev
|
885 |
+
revision: None
|
886 |
+
metrics:
|
887 |
+
- type: map_at_1
|
888 |
+
value: 25.795
|
889 |
+
- type: map_at_10
|
890 |
+
value: 72.258
|
891 |
+
- type: map_at_100
|
892 |
+
value: 76.049
|
893 |
+
- type: map_at_1000
|
894 |
+
value: 76.134
|
895 |
+
- type: map_at_3
|
896 |
+
value: 50.697
|
897 |
+
- type: map_at_5
|
898 |
+
value: 62.324999999999996
|
899 |
+
- type: mrr_at_1
|
900 |
+
value: 86.634
|
901 |
+
- type: mrr_at_10
|
902 |
+
value: 89.792
|
903 |
+
- type: mrr_at_100
|
904 |
+
value: 89.91900000000001
|
905 |
+
- type: mrr_at_1000
|
906 |
+
value: 89.923
|
907 |
+
- type: mrr_at_3
|
908 |
+
value: 89.224
|
909 |
+
- type: mrr_at_5
|
910 |
+
value: 89.608
|
911 |
+
- type: ndcg_at_1
|
912 |
+
value: 86.634
|
913 |
+
- type: ndcg_at_10
|
914 |
+
value: 80.589
|
915 |
+
- type: ndcg_at_100
|
916 |
+
value: 84.812
|
917 |
+
- type: ndcg_at_1000
|
918 |
+
value: 85.662
|
919 |
+
- type: ndcg_at_3
|
920 |
+
value: 82.169
|
921 |
+
- type: ndcg_at_5
|
922 |
+
value: 80.619
|
923 |
+
- type: precision_at_1
|
924 |
+
value: 86.634
|
925 |
+
- type: precision_at_10
|
926 |
+
value: 40.389
|
927 |
+
- type: precision_at_100
|
928 |
+
value: 4.93
|
929 |
+
- type: precision_at_1000
|
930 |
+
value: 0.513
|
931 |
+
- type: precision_at_3
|
932 |
+
value: 72.104
|
933 |
+
- type: precision_at_5
|
934 |
+
value: 60.425
|
935 |
+
- type: recall_at_1
|
936 |
+
value: 25.795
|
937 |
+
- type: recall_at_10
|
938 |
+
value: 79.565
|
939 |
+
- type: recall_at_100
|
940 |
+
value: 93.24799999999999
|
941 |
+
- type: recall_at_1000
|
942 |
+
value: 97.595
|
943 |
+
- type: recall_at_3
|
944 |
+
value: 52.583999999999996
|
945 |
+
- type: recall_at_5
|
946 |
+
value: 66.175
|
947 |
+
- task:
|
948 |
+
type: Classification
|
949 |
+
dataset:
|
950 |
+
type: C-MTEB/TNews-classification
|
951 |
+
name: MTEB TNews
|
952 |
+
config: default
|
953 |
+
split: validation
|
954 |
+
revision: None
|
955 |
+
metrics:
|
956 |
+
- type: accuracy
|
957 |
+
value: 47.648999999999994
|
958 |
+
- type: f1
|
959 |
+
value: 46.28925837008413
|
960 |
+
- task:
|
961 |
+
type: Clustering
|
962 |
+
dataset:
|
963 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
964 |
+
name: MTEB ThuNewsClusteringP2P
|
965 |
+
config: default
|
966 |
+
split: test
|
967 |
+
revision: None
|
968 |
+
metrics:
|
969 |
+
- type: v_measure
|
970 |
+
value: 54.07641891287953
|
971 |
+
- task:
|
972 |
+
type: Clustering
|
973 |
+
dataset:
|
974 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
975 |
+
name: MTEB ThuNewsClusteringS2S
|
976 |
+
config: default
|
977 |
+
split: test
|
978 |
+
revision: None
|
979 |
+
metrics:
|
980 |
+
- type: v_measure
|
981 |
+
value: 53.423702062353954
|
982 |
+
- task:
|
983 |
+
type: Retrieval
|
984 |
+
dataset:
|
985 |
+
type: C-MTEB/VideoRetrieval
|
986 |
+
name: MTEB VideoRetrieval
|
987 |
+
config: default
|
988 |
+
split: dev
|
989 |
+
revision: None
|
990 |
+
metrics:
|
991 |
+
- type: map_at_1
|
992 |
+
value: 55.7
|
993 |
+
- type: map_at_10
|
994 |
+
value: 65.923
|
995 |
+
- type: map_at_100
|
996 |
+
value: 66.42
|
997 |
+
- type: map_at_1000
|
998 |
+
value: 66.431
|
999 |
+
- type: map_at_3
|
1000 |
+
value: 63.9
|
1001 |
+
- type: map_at_5
|
1002 |
+
value: 65.225
|
1003 |
+
- type: mrr_at_1
|
1004 |
+
value: 55.60000000000001
|
1005 |
+
- type: mrr_at_10
|
1006 |
+
value: 65.873
|
1007 |
+
- type: mrr_at_100
|
1008 |
+
value: 66.36999999999999
|
1009 |
+
- type: mrr_at_1000
|
1010 |
+
value: 66.381
|
1011 |
+
- type: mrr_at_3
|
1012 |
+
value: 63.849999999999994
|
1013 |
+
- type: mrr_at_5
|
1014 |
+
value: 65.17500000000001
|
1015 |
+
- type: ndcg_at_1
|
1016 |
+
value: 55.7
|
1017 |
+
- type: ndcg_at_10
|
1018 |
+
value: 70.621
|
1019 |
+
- type: ndcg_at_100
|
1020 |
+
value: 72.944
|
1021 |
+
- type: ndcg_at_1000
|
1022 |
+
value: 73.25399999999999
|
1023 |
+
- type: ndcg_at_3
|
1024 |
+
value: 66.547
|
1025 |
+
- type: ndcg_at_5
|
1026 |
+
value: 68.93599999999999
|
1027 |
+
- type: precision_at_1
|
1028 |
+
value: 55.7
|
1029 |
+
- type: precision_at_10
|
1030 |
+
value: 8.52
|
1031 |
+
- type: precision_at_100
|
1032 |
+
value: 0.958
|
1033 |
+
- type: precision_at_1000
|
1034 |
+
value: 0.098
|
1035 |
+
- type: precision_at_3
|
1036 |
+
value: 24.733
|
1037 |
+
- type: precision_at_5
|
1038 |
+
value: 16
|
1039 |
+
- type: recall_at_1
|
1040 |
+
value: 55.7
|
1041 |
+
- type: recall_at_10
|
1042 |
+
value: 85.2
|
1043 |
+
- type: recall_at_100
|
1044 |
+
value: 95.8
|
1045 |
+
- type: recall_at_1000
|
1046 |
+
value: 98.3
|
1047 |
+
- type: recall_at_3
|
1048 |
+
value: 74.2
|
1049 |
+
- type: recall_at_5
|
1050 |
+
value: 80
|
1051 |
+
- task:
|
1052 |
+
type: Classification
|
1053 |
+
dataset:
|
1054 |
+
type: C-MTEB/waimai-classification
|
1055 |
+
name: MTEB Waimai
|
1056 |
+
config: default
|
1057 |
+
split: test
|
1058 |
+
revision: None
|
1059 |
+
metrics:
|
1060 |
+
- type: accuracy
|
1061 |
+
value: 84.54
|
1062 |
+
- type: ap
|
1063 |
+
value: 66.13603199670062
|
1064 |
+
- type: f1
|
1065 |
+
value: 82.61420654584116
|
1066 |
+
---
|
1067 |
+
<!-- TODO: add evaluation results here -->
|
1068 |
+
<br><br>
|
1069 |
+
|
1070 |
+
<p align="center">
|
1071 |
+
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
1072 |
+
</p>
|
1073 |
+
|
1074 |
+
|
1075 |
+
<p align="center">
|
1076 |
+
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
1077 |
+
</p>
|
1078 |
+
|
1079 |
+
## Quick Start
|
1080 |
+
|
1081 |
+
The easiest way to starting using `jina-embeddings-v2-base-zh` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
1082 |
+
|
1083 |
+
## Intended Usage & Model Info
|
1084 |
+
|
1085 |
+
`jina-embeddings-v2-base-zh` is a Chinese/English bilingual text **embedding model** supporting **8192 sequence length**.
|
1086 |
+
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
|
1087 |
+
We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed Chinese-English input without bias.
|
1088 |
+
Additionally, we provide the following embedding models:
|
1089 |
+
|
1090 |
+
`jina-embeddings-v2-base-zh` 是支持中英双语的**文本向量**模型,它支持长达**8192字符**的文本编码。
|
1091 |
+
该模型的研发基于BERT架构(JinaBERT),JinaBERT是在BERT架构基础上的改进,首次将[ALiBi](https://arxiv.org/abs/2108.12409)应用到编码器架构中以支持更长的序列。
|
1092 |
+
不同于以往的单语言/多语言向量模型,我们设计双语模型来更好的支持单语言(中搜中)以及跨语言(中搜英)文档检索。
|
1093 |
+
除此之外,我们也提供其它向量模型:
|
1094 |
+
|
1095 |
+
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
|
1096 |
+
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
|
1097 |
+
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English Bilingual embeddings **(you are here)**.
|
1098 |
+
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English Bilingual embeddings.
|
1099 |
+
- [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon).
|
1100 |
+
- [`jina-embeddings-v2-base-code`](https://huggingface.co/jinaai/jina-embeddings-v2-base-code): 161 million parameters code embeddings.
|
1101 |
+
|
1102 |
+
## Data & Parameters
|
1103 |
+
|
1104 |
+
The data and training details are described in this [technical report](https://arxiv.org/abs/2402.17016).
|
1105 |
+
|
1106 |
+
|
1107 |
+
## Usage
|
1108 |
+
|
1109 |
+
**<details><summary>Please apply mean pooling when integrating the model.</summary>**
|
1110 |
+
<p>
|
1111 |
+
|
1112 |
+
### Why mean pooling?
|
1113 |
+
|
1114 |
+
`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
|
1115 |
+
It has been proved to be the most effective way to produce high-quality sentence embeddings.
|
1116 |
+
We offer an `encode` function to deal with this.
|
1117 |
+
|
1118 |
+
However, if you would like to do it without using the default `encode` function:
|
1119 |
+
|
1120 |
+
```python
|
1121 |
+
import torch
|
1122 |
+
import torch.nn.functional as F
|
1123 |
+
from transformers import AutoTokenizer, AutoModel
|
1124 |
+
|
1125 |
+
def mean_pooling(model_output, attention_mask):
|
1126 |
+
token_embeddings = model_output[0]
|
1127 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
1128 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
1129 |
+
|
1130 |
+
sentences = ['How is the weather today?', '今天天气怎么样?']
|
1131 |
+
|
1132 |
+
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-zh')
|
1133 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
1134 |
+
|
1135 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
1136 |
+
|
1137 |
+
with torch.no_grad():
|
1138 |
+
model_output = model(**encoded_input)
|
1139 |
+
|
1140 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
1141 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
1142 |
+
```
|
1143 |
+
|
1144 |
+
</p>
|
1145 |
+
</details>
|
1146 |
+
|
1147 |
+
You can use Jina Embedding models directly from transformers package.
|
1148 |
+
|
1149 |
+
```python
|
1150 |
+
!pip install transformers
|
1151 |
+
import torch
|
1152 |
+
from transformers import AutoModel
|
1153 |
+
from numpy.linalg import norm
|
1154 |
+
|
1155 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
1156 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
1157 |
+
embeddings = model.encode(['How is the weather today?', '今天天气怎么样?'])
|
1158 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
1159 |
+
```
|
1160 |
+
|
1161 |
+
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
|
1162 |
+
|
1163 |
+
```python
|
1164 |
+
embeddings = model.encode(
|
1165 |
+
['Very long ... document'],
|
1166 |
+
max_length=2048
|
1167 |
+
)
|
1168 |
+
```
|
1169 |
+
|
1170 |
+
If you want to use the model together with the [sentence-transformers package](https://github.com/UKPLab/sentence-transformers/), make sure that you have installed the latest release and set `trust_remote_code=True` as well:
|
1171 |
+
|
1172 |
+
```python
|
1173 |
+
!pip install -U sentence-transformers
|
1174 |
+
from sentence_transformers import SentenceTransformer
|
1175 |
+
from numpy.linalg import norm
|
1176 |
+
|
1177 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
1178 |
+
model = SentenceTransformer('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
|
1179 |
+
embeddings = model.encode(['How is the weather today?', '今天天气怎么样?'])
|
1180 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
1181 |
+
```
|
1182 |
+
|
1183 |
+
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
|
1184 |
+
|
1185 |
+
```python
|
1186 |
+
!pip install -U sentence-transformers
|
1187 |
+
from sentence_transformers import SentenceTransformer
|
1188 |
+
from sentence_transformers.util import cos_sim
|
1189 |
+
|
1190 |
+
model = SentenceTransformer(
|
1191 |
+
"jinaai/jina-embeddings-v2-base-zh", # switch to en/zh for English or Chinese
|
1192 |
+
trust_remote_code=True
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
# control your input sequence length up to 8192
|
1196 |
+
model.max_seq_length = 1024
|
1197 |
+
|
1198 |
+
embeddings = model.encode([
|
1199 |
+
'How is the weather today?',
|
1200 |
+
'今天天气怎么样?'
|
1201 |
+
])
|
1202 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
1203 |
+
```
|
1204 |
+
|
1205 |
+
## Alternatives to Using Transformers Package
|
1206 |
+
|
1207 |
+
1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
1208 |
+
2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy).
|
1209 |
+
|
1210 |
+
## Use Jina Embeddings for RAG
|
1211 |
+
|
1212 |
+
According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
|
1213 |
+
|
1214 |
+
> In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
|
1215 |
+
|
1216 |
+
<img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px">
|
1217 |
+
|
1218 |
+
## Trouble Shooting
|
1219 |
+
|
1220 |
+
**Loading of Model Code failed**
|
1221 |
+
|
1222 |
+
If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized.
|
1223 |
+
This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model:
|
1224 |
+
|
1225 |
+
```bash
|
1226 |
+
Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-zh were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ...
|
1227 |
+
```
|
1228 |
+
|
1229 |
+
**User is not logged into Huggingface**
|
1230 |
+
|
1231 |
+
The model is only availabe under [gated access](https://huggingface.co/docs/hub/models-gated).
|
1232 |
+
This means you need to be logged into huggingface load load it.
|
1233 |
+
If you receive the following error, you need to provide an access token, either by using the huggingface-cli or providing the token via an environment variable as described above:
|
1234 |
+
```bash
|
1235 |
+
OSError: jinaai/jina-embeddings-v2-base-zh is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'
|
1236 |
+
If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`.
|
1237 |
+
```
|
1238 |
+
|
1239 |
+
## Contact
|
1240 |
+
|
1241 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
1242 |
+
|
1243 |
+
## Citation
|
1244 |
+
|
1245 |
+
If you find Jina Embeddings useful in your research, please cite the following paper:
|
1246 |
+
|
1247 |
+
```
|
1248 |
+
@article{mohr2024multi,
|
1249 |
+
title={Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings},
|
1250 |
+
author={Mohr, Isabelle and Krimmel, Markus and Sturua, Saba and Akram, Mohammad Kalim and Koukounas, Andreas and G{\"u}nther, Michael and Mastrapas, Georgios and Ravishankar, Vinit and Mart{\'\i}nez, Joan Fontanals and Wang, Feng and others},
|
1251 |
+
journal={arXiv preprint arXiv:2402.17016},
|
1252 |
+
year={2024}
|
1253 |
+
}
|
1254 |
+
```
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "jinaai/jina-bert-implementation",
|
3 |
+
"architectures": [
|
4 |
+
"JinaBertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"attn_implementation": "torch",
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "jinaai/jina-bert-implementation--configuration_bert.JinaBertConfig",
|
10 |
+
"AutoModel": "jinaai/jina-bert-implementation--modeling_bert.JinaBertModel",
|
11 |
+
"AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
|
12 |
+
"AutoModelForQuestionAnswering": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForTokenClassification"
|
15 |
+
},
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"emb_pooler": "mean",
|
18 |
+
"feed_forward_type": "geglu",
|
19 |
+
"gradient_checkpointing": false,
|
20 |
+
"hidden_act": "gelu",
|
21 |
+
"hidden_dropout_prob": 0.1,
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"layer_norm_eps": 1e-12,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_max_length": 8192,
|
28 |
+
"model_type": "bert",
|
29 |
+
"num_attention_heads": 12,
|
30 |
+
"num_hidden_layers": 12,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"position_embedding_type": "alibi",
|
33 |
+
"torch_dtype": "float16",
|
34 |
+
"transformers_version": "4.30.2",
|
35 |
+
"type_vocab_size": 2,
|
36 |
+
"use_cache": true,
|
37 |
+
"vocab_size": 61056
|
38 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.30.2",
|
5 |
+
"pytorch": "2.0.1"
|
6 |
+
}
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29b7cdda0c8fa9b18f8e0fbc4aba0c9537555fb16b139fa44be92c1e1b3253a8
|
3 |
+
size 321648328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false,
|
4 |
+
"model_args": {"trust_remote_code": true}
|
5 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "RobertaTokenizer",
|
55 |
+
"trim_offsets": true,
|
56 |
+
"unk_token": "<unk>"
|
57 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|