--- language: - ml license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - thennal/GMaSC metrics: - wer model-index: - name: Whisper Small Malayalam - Arjun Shaji results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: thennal/GMaSC type: thennal/GMaSC args: 'config: ml, split: test' metrics: - name: Wer type: wer value: 16.95364238410596 --- # Whisper Small Malayalam - Arjun Shaji This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the thennal/GMaSC dataset. It achieves the following results on the evaluation set: - Loss: 0.0505 - Wer: 16.9536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0022 | 10.0 | 1000 | 0.0410 | 18.0132 | | 0.0002 | 20.0 | 2000 | 0.0454 | 17.6159 | | 0.0 | 30.0 | 3000 | 0.0486 | 17.2185 | | 0.0 | 40.0 | 4000 | 0.0499 | 17.1302 | | 0.0 | 50.0 | 5000 | 0.0505 | 16.9536 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1