gurmeharkaur
commited on
Commit
·
1046109
1
Parent(s):
4bc156b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- fashion_mnist_quality_drift
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: resnet-50-fashion-mnist-quality-drift
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: fashion_mnist_quality_drift
|
18 |
+
type: fashion_mnist_quality_drift
|
19 |
+
config: default
|
20 |
+
split: training
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.73
|
26 |
+
- name: F1
|
27 |
+
type: f1
|
28 |
+
value: 0.7289360255705818
|
29 |
+
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# resnet-50-fashion-mnist-quality-drift
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the fashion_mnist_quality_drift dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.7473
|
39 |
+
- Accuracy: 0.73
|
40 |
+
- F1: 0.7289
|
41 |
+
|
42 |
+
## Model description
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Intended uses & limitations
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training and evaluation data
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Training procedure
|
55 |
+
|
56 |
+
### Training hyperparameters
|
57 |
+
|
58 |
+
The following hyperparameters were used during training:
|
59 |
+
- learning_rate: 0.0002
|
60 |
+
- train_batch_size: 8
|
61 |
+
- eval_batch_size: 8
|
62 |
+
- seed: 42
|
63 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
+
- lr_scheduler_type: linear
|
65 |
+
- num_epochs: 3
|
66 |
+
- mixed_precision_training: Native AMP
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
72 |
+
| 1.5138 | 1.0 | 750 | 0.9237 | 0.684 | 0.6826 |
|
73 |
+
| 0.9377 | 2.0 | 1500 | 0.7861 | 0.722 | 0.7253 |
|
74 |
+
| 0.8276 | 3.0 | 2250 | 0.7473 | 0.73 | 0.7289 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.21.0
|
80 |
+
- Pytorch 1.12.0+cu113
|
81 |
+
- Datasets 2.4.0
|
82 |
+
- Tokenizers 0.12.1
|