gurmeharkaur commited on
Commit
1046109
·
1 Parent(s): 4bc156b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - fashion_mnist_quality_drift
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: resnet-50-fashion-mnist-quality-drift
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: fashion_mnist_quality_drift
18
+ type: fashion_mnist_quality_drift
19
+ config: default
20
+ split: training
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.73
26
+ - name: F1
27
+ type: f1
28
+ value: 0.7289360255705818
29
+ ---
30
+
31
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
+ should probably proofread and complete it, then remove this comment. -->
33
+
34
+ # resnet-50-fashion-mnist-quality-drift
35
+
36
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the fashion_mnist_quality_drift dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 0.7473
39
+ - Accuracy: 0.73
40
+ - F1: 0.7289
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 0.0002
60
+ - train_batch_size: 8
61
+ - eval_batch_size: 8
62
+ - seed: 42
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 3
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
+ | 1.5138 | 1.0 | 750 | 0.9237 | 0.684 | 0.6826 |
73
+ | 0.9377 | 2.0 | 1500 | 0.7861 | 0.722 | 0.7253 |
74
+ | 0.8276 | 3.0 | 2250 | 0.7473 | 0.73 | 0.7289 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.21.0
80
+ - Pytorch 1.12.0+cu113
81
+ - Datasets 2.4.0
82
+ - Tokenizers 0.12.1